Advertisement

Framework for Instruction Theory

Wiskobas Viewed Three-dimensionally and Seen from the Outside
Chapter
  • 102 Downloads
Part of the Mathematics Education Library book series (MELI, volume 3)

Abstract

In the first chapter we distinguished four trends in mathematics education, to wit the mechanistic (arithmetic), empiricist, structuralist and the realistic, represented by Wiskobas.

Keywords

Mathematics Instruction Concept Formation Fair Sharing Context Problem Instruction Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors, L. V. et al.: ‘On the mathematics curriculum of the High School’, Mathematics Teacher 55 (1962), 191–195.Google Scholar
  2. 2.
    Papy, G.: Mathématique moderne, vol. 1, Bruxelles 1963.Google Scholar
  3. 3.
    Thom, R.: ‘Modern mathematics: Does it exist?’, in Howson, A. G. (ed.), Developments in mathematical education, Cambridge UK, 1973, pp. 194–209.CrossRefGoogle Scholar
  4. 4.
    Whitney, H.: ‘Are we off the track in teaching mathematical concepts?’, in Howson, A. G. (ed.), Developments in mathematical education, Cambridge 1973, pp. 283–299.CrossRefGoogle Scholar
  5. Whitney, H.: ‘Taking responsibility in school mathematics education’, in Streefland, L. (ed.), Proceedings of the Ninth International Conference for the Psychology of Mathematics Education, vol. 2. Utrecht 1985, pp. 123–141.Google Scholar
  6. 5.
    Hilton, P. and Pedersen, J.: Fear no more. An adult approach to Mathematics, Menlo Park 1983.Google Scholar
  7. Hilton, P.: ‘Current trends in mathematics and future trends in Mathematics Education’, For the Learning of Mathematics 4 (1984), 2–9.Google Scholar
  8. Hilton, P.: ‘Do we still need to teach fractions?’, in Zweng, M. et al. (eds.), Proceedings of the Fourth International Congress on Mathematics Education, Boston 1983, pp. 3741.Google Scholar
  9. 6.
    Lakatos, I.: Proofs and refutations. The logic of mathematical discovery, Cambridge UK, 1977.Google Scholar
  10. 7.
    Freudenthal, H.: Didactical phenomenology of mathematical structures, Dordrecht 1983, p. ix.Google Scholar
  11. 8.
    Freudenthal, H.: Mathematics as an educational task, Dordrecht 1973, p. 121.Google Scholar
  12. 9.
    Hiele, P. M. van: Begrip en inzicht, Purmerend 1973.Google Scholar
  13. Hiele, P. M. van: Structure and insight. A theory of mathematics education, New York 1985.Google Scholar
  14. Hiele-Geldof, D. van and Hiele, P. M. van: English translation of selected writings, Brooklyn New York, 1984.Google Scholar
  15. 10.
    Hofstadter, D. R.: Gödel, Escher, Bach: An eternal golden braid, New York 1979.Google Scholar
  16. 11.
    Kilpatrick, J.: ‘Reflection and Recursion’, Educational Studies in Mathematics 16 (1985), 1–26.CrossRefGoogle Scholar
  17. 12.
    Burger, W. F. and Shaughnessy, J. M.: ‘Characterizing the van Hiele levels of development in geometry’, Journal for Research in Mathematics Education 17 (1986), 31–48.CrossRefGoogle Scholar
  18. 13.
    Freudenthal, H.: Didactical phenomenology of mathematical structures, Dordrecht 1983, pp. 32–33.Google Scholar
  19. 14.
    Morley, A.: ‘A new development in primary school mathematics. The Dutch Wiskobas Project’, Mathematics Teaching 69 (1975), 15–1Google Scholar
  20. 15.
    Heege, H. ter: ‘The acquisition of basic multiplication skills’, Educational Studies in Mathematics 16 (1985), 375–389.CrossRefGoogle Scholar
  21. 16.
    Brink, J. van den and Streefland, L.: ‘Young children (6–8) — Ratio and Proportion’, Educational Studies in Mathematics 10 (1979), 33–59.CrossRefGoogle Scholar
  22. Streefland, L.: ‘Search for the roots of ratio: some thoughts on the long term learning process. Part I: Reflections on a teaching experiment’, Educational Studies in Mathematics 15 (1984), 327–348.CrossRefGoogle Scholar
  23. Streefland, L.: ‘Search for the roots of ratio: some thoughts on the long term learning process. Part II: The outline of the long term learning process’, Educational Studies in Mathematics 16 (1985), 75–94.CrossRefGoogle Scholar
  24. 17.
    Streefland, L.: How to teach fractions so as to be useful, Utrecht 1984.Google Scholar
  25. 18.
    Heege, H. ter and Moor, E. de: Oppervlakte (1), IOWO curriculum development publication 7, Utrecht 1977.Google Scholar
  26. Jong, R. de: Oppervlakte (20), IOWO curriculum development publication 9, Utrecht 1979.Google Scholar
  27. 19.
    Goddijn, A.: Shadow and depth, Utrecht 1983.Google Scholar
  28. Gravemeijer, K. and Kraemer, J. M.: Met het oog op ruimte, Tilburg 1985.Google Scholar
  29. Schoemaker, G.: ‘Sieh dich ganz im Spiegel’, Mathematik lehren 2 (1984), 18–33.Google Scholar
  30. Lange, J. de and Kindt, M.: ‘The Hewet Project — Report on an experiment leading to a new curriculum for pre-university students’, Zentralblatt für Didaktik der Mathematik 16 (1984), 74–79.Google Scholar
  31. 20.
    N.C.T.M.: Report on the Second National Assessment of the National Assessment of Educational Progress, NAEP, Reston 1980.Google Scholar
  32. 21.
    Whitney, H.: ‘Taking responsibility in school mathematics education’, in Streefland, L. (ed.), Proceedings of the Ninth International Conference for the Psychology of Mathematics Education, vol. 2, Utrecht 1985, p. 191.Google Scholar
  33. 22.
    Thompson, A. B.: ‘The relationship of teachers’ conceptions of mathematics and mathematics teaching to instructional practice’, Educational Studies in Mathematics 15 (1984), 105–129.CrossRefGoogle Scholar
  34. 23.
    Cooney, T. J.: ‘A beginning teacher’s view of problem solving’, Journal for Research in Mathematics Education 16 (1985), 324–336.CrossRefGoogle Scholar
  35. Cooney, T. J.: ‘The contribution of theory to mathematics teacher education’, in Steiner, H. G. et al. (eds.), Theory of Mathematics Education, Bielefeld 1984, pp. 120–132.Google Scholar
  36. 24.
    Menninger, K.: Zahlwort und Ziffer, band II, Göttingen 1958.Google Scholar
  37. 25.
    Gagné, R. M.: The conditions of learning, London 1965, p. 60.Google Scholar
  38. 26.
    Gagné, R. M.: ‘Some issues in the psychology of mathematics instruction’, Journal for Research in Mathematics Education 14 (1983), 7–19.CrossRefGoogle Scholar
  39. 27.
    Dienes, Z. P.: The six stages in the process of learning mathematics, London 1973, p. 9.Google Scholar
  40. 28.
    See also: Dienes, Z. P.: Building up mathematics, London 1960.Google Scholar
  41. 29.
    Dienes, Z. P.: The stages in the process of learning, London 1973, p. 9.Google Scholar
  42. 30.
    Karplus, R., Pulos, S. and Stage, E. K.: Proportional reasoning of early Adolescents, in Lesh, R. and Landau, M. (eds.), Acquisition of Mathematics Concepts and Processes, New York 1983, p. 81.Google Scholar
  43. 31.
    Bruner, J. S.: Toward a theory of instruction, Cambridge 1966.Google Scholar
  44. Piaget, J.: Comments on mathematical education, in Howson, A. G. (ed.), Developments in mathematical education, Cambridge 1973, pp. 79–88.CrossRefGoogle Scholar
  45. Piaget, J.: Science of education and the psychology of the child, London 1971.Google Scholar
  46. 32.
    Friedman, M.: ‘The manipulative material strategy: The latest pied paper?’, Journal for Research in Mathematics Education 9 (1978), 78–81.CrossRefGoogle Scholar
  47. Khoury, H. A. and Behr, M.: ‘Student performance, individual differences and modes of representation’, Journal for Research in Mathematics Education 13 (1982), 228–235.CrossRefGoogle Scholar
  48. Kieren, T. E.: ‘Manipulative material in mathematics learning’, Journal for Research in Mathematics Education 2 (1971), 228–235.CrossRefGoogle Scholar
  49. 33.
    Behr, M. J., Lesh, R., Post, T. R. and Silver, E. A.: ‘Rational number concepts’, in Lesh, R. and Landau, M. (eds.), Acquisition of mathematics concepts and processes, New York 1983, pp. 92–128.Google Scholar
  50. Behr, M. J., Wachsmuth, I., Post, T. R. and Lesh, R.: ‘Order and equivalence of rational numbers: A clinical teaching experiment’, Journal for Research in Mathematics Education 15 (1984), 323–342.CrossRefGoogle Scholar
  51. Lesh, R., Landau, M. and Hamilton, E.: ‘Conceptual modes and applied mathematical problem-solving research’, in Lesh, R. and Landau, M. (eds.), Acquisition of mathematics concepts and processes, New York 1983, pp. 264–345.Google Scholar
  52. 34.
    Davis, R.: ‘A conceptual basis for problem-solving studies’, in Dörfler, W. and Fisher, R. (eds.), Empirische Untersuchungen zum Lehren und Lernen von Mathematik,Wien 1985, pp. 70–71.Google Scholar
  53. 35.
    Davis, R. B.: Learning mathematics. The cognitive science approach to mathematics education, London 1984.Google Scholar
  54. 36.
    Davis, R. B.: Learning mathematics. The cognitive science approach to mathematics education, London 1984, p. 313.Google Scholar
  55. 37.
    Lawler, R. W.: ‘Extending a powerful idea’, Journal of Mathematical Behavior, 3, 2 (1982), 81–98.Google Scholar
  56. Nason, R. and Cooper, I.: A theory of mathematics education — an information processing view (or developments towards an expert system for mathematics education),1985, draft.Google Scholar
  57. 38.
    Kilpatrick, J.: ‘Refléction and recursion’, Educational Studies in Mathematics 16 (1985), p. 21.CrossRefGoogle Scholar
  58. 39.
    Bauersfeld, H., Krummheuer, G. and Voigt, J.: ‘Interactional theory of learning and teaching mathematics and related micro-ethnographical studies’, in Foundation and methodology of the discipline mathematics education (didactics of mathematics), Bielefeld 1985, pp. 12–17.Google Scholar
  59. 40.
    Bauersfeld, H.: ‘Subjektive Erfahrungsbereiche als Grundlage einer Interaktionstheorie des Mathematiklernens und –lehrens’, in Lernen and Lehren von Mathematik, Köln 1983, pp. 1–57.Google Scholar
  60. 41.
    Lawler, R. W.: Extending a Powerful Idea, Journal of Mathematical Behavior 3, 2 (1982), 81–98.Google Scholar
  61. Papert, S.: Mindstorms: Children, computers and powerful ideas, New York 1980.Google Scholar
  62. 42.
    Kilpatrick, J.: ‘Reflection and recursion’, Educational Studies in Mathematics 16 (1985), p. 13.CrossRefGoogle Scholar
  63. 43.
    Bauersfeld, H., Krummheuer, G. and Voigt, J.: ‘Interactional theory of learning and teaching mathematics and related micro-ethnographical studies’, in Foundation and methodology of the discipline mathematics education (didactics of mathematics), Bielefeld 1985, p. 13.Google Scholar
  64. 44.
    Bauersfeld, H.: ‘Subjektive Erfahrungsbereiche als Grundlage einer Interaktionstheorie des Mathematiklernens and –lehrens’, in Lernen and Lehren von Mathematik, Köln 1983, p. 52.Google Scholar
  65. 45.
    Brousseau, G.: ‘The crucial role of the didactical contract in the analysis and construction of situations in teaching and learning mathematics’, in Steiner, H. G. et al. (eds.), Theory of mathematics education, Bielefeld 1984, pp. 110–120.Google Scholar
  66. 46.
    Balacheff, N. and Laborde, C.: ‘Social interactions for experimental studies of pupils’ conception: its relevance for research in didactics of mathematics’, in Foundation and methodology of the discipline mathematics education (didactics of mathematics), Bielefeld 1985, pp. 1–6.Google Scholar
  67. 47.
    Bishop, A.: ‘The social psychology of mathematics education’, in Streefland, L. (ed.), Proceedings of the Ninth International Conference for the Psychology of Mathematics Education, vol. 2, Utrecht 1985, pp. 1–15.Google Scholar
  68. Bishop, A. and Goffree, F.: ‘Classroom organisation and dynamics’, in Christiansen, B. et al. (eds.), Perpectives in mathematics education, Dordrecht 1986, pp. 309–365.CrossRefGoogle Scholar
  69. 48.
    Lesh, R., Landau, M. and Hamilton, E.: ‘Conceptual models and applied mathematical problem-solving research’, in Lesh, R. and Landau, M. (eds.), Acquisition of mathematics concepts and processes, New York 1983, pp. 264–345.Google Scholar
  70. 49.
    Lesh, R., Landau, M. and Hamilton, E.: ‘Conceptual models and applied mathematical problem-solving research’, in Lesh, R. and Landau, M. (eds.), Acquisition of mathematics concepts and processes, New York 1983, p. 266.Google Scholar
  71. 50.
    Lesh, R.: ‘Conceptual analysis of mathematical ideas and problem solving processes’, in Streefland, L. (ed.), Proceedings of the Ninth International Conference for the Psychology of Mathematics Education, Utrecht 1985, p. 79–80.Google Scholar
  72. 51.
    Vergnaud, G.: ‘A classification of cognitive tasks and operations of thought involved in addition and subtraction problems’, in Carpenter, T. P., Moser, J. M. and Romberg, T. A. (eds.), Addition and subtraction. A cognitive perspective, Hillsdale 1982, pp. 39–60.Google Scholar
  73. 52.
    Vergnaud, G.: ‘Multiplicative structures’, in Lesh, L. and Landau, M. (eds.), Acquisition of mathematics concepts and processes, New York 1983, p. 172.Google Scholar
  74. 53.
    Douady, R.: ‘The interplay between different settings tool-object dialectic in the extension of mathematical ability — Examples from elementary school teaching’, in Streefland, L. (ed.), Proceedings of the Ninth International Conference for the Psychology of Mathematics Education, Utrecht 1985, pp. 35–53.Google Scholar
  75. 54.
    Resnick, L. B. and Ford, W. W.: The psychology of mathematics for instruction, Hillsdale 1981, p. 245.Google Scholar
  76. 55.
    Cobb, P. and Steffe, L. P.: ‘The constructivist researcher as teacher and model builder’, Journal for Research in Mathematics Education 14 (1985), pp. 95–101.Google Scholar
  77. 56.
    Davydov, V. V.: ‘Logical and psychological problems of elementary mathematics as an academic subject’, in Kilpatrick, J. et al. (eds.), Soviet-Studies in the psychology of learning and teaching mathematics, vol. VII, Chicago 1975, pp. 55–109.Google Scholar
  78. Davydov, V. V.: Arten der Verallgemeinerung im Unterricht Logischpsychologische Probleme des Aufbaus für Unterrichtsfächern, Berlin 1977.Google Scholar
  79. 57.
    Gal’perin, P. J. and Talysina, N. F.: ‘Die Bildung erster geometrischer Begriffe auf der Grundlage organisierter Handlungen der Schüler’, in Galperin, P. J. et al. (eds.), Probleme der Lerntheorie, Berlin 1974, pp. 106–130.Google Scholar
  80. 58.
    Lesh, R.: ‘Conceptual analysis of mathematical ideas and problem solving processes’, in Streefland, L. (ed.), Proceedings of the Ninth International Conference for the Psychology of Mathematics Education, Utrecht 1985, pp. 73–97.Google Scholar
  81. 59.
    Kilpatrick, J.: ‘Reflection and recursion’, Educational Studies in Mathematics 16 (1985), p. 11.CrossRefGoogle Scholar
  82. 60.
    Hinton, G. E. and Anderson, J. A. (eds.): Parallel models of associative memory, Hillsdale 1981.Google Scholar
  83. 61.
    Gal’perin, P. J.: ‘Stages in the development of mental acts’, in Cole, M. and Maltzman, J. (eds.), Handbook of contemporary soviet psychology, London 1969, pp. 149–173.Google Scholar
  84. 62.
    Gal’perin, P. J. and Talysina, N. F.: ‘Die Bildung erster geometrischer Begriffe auf der Grundlage organisierter Handlungen der Schüler’, in Galperin, P. J. et al. (eds.), Probleme der Lerntheorie, Berlin 1974, pp. 106–130.Google Scholar
  85. 63.
    Davydov, V. V.: ‘Logical and psychological problems of elementary mathematics as an academic subject’, in Kilpatrick, J. et al. (eds.), Soviet-studies in the psychology of learning and teaching mathematics, vol. VII, Chicago 1975, pp. 55–109.Google Scholar
  86. Davydov, V. V.: Arten der Verallgemeinerung im Unterricht Logischpsychologische Probleme des Aufbaus für Unterrichtsfächern, Berlin 1977.Google Scholar
  87. 64.
    Carpenter, T. P. and Moser, J. M.: ‘The acquisition of addition and subtraction concepts’, in Lesh, R. and Landau, M. (eds.), Acquisition of mathematics concepts and processes, New York 1983, pp. 7–45.Google Scholar
  88. Corte, E. de and Verschaffel, L.: ‘Beginning first graders’ initial representation of arithmetic word problems’, The Journal of Mathematical Behavior 4. 1 (1986), 3–15.Google Scholar
  89. Riley, M. I., Greeno, J. G. and Heller, J. I.: ‘Development of children’s problem solving ability in arithmetic’, in Ginsburg (ed.), The development of mathematical thinking, New York 1983, pp. 153–197.Google Scholar
  90. Verschaffel, L.: Representatie-en oplo’ssingsprocessen van eersteklassers bij aanvankelijke redactie-opgaven over optellen en aftrekken. Een theoretische en methodologische bijdrage op basis van een longitudinale, kwalitatiefpsychologische studie, ( Ph.D. diss. ), Leuven 1984.Google Scholar
  91. 65.
    Steiner, H. G.: ‘Theory of mathematics education — An introductory talk’, in Steiner, H. G. et al. (eds.), Theory of mathematics education, Bielefeld 1984, p. 25.Google Scholar
  92. Steiner, H. G. (ed.): Grundfragen der Entwicklung mathematischer Fähigkeiten, Köln 1986.Google Scholar
  93. Steiner, H. G.: ‘Theorie der Mathematikdidaktik’, Zentrallblatt für Didaktik der Mathematik 17 (1985), pp. 57–65.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  1. 1.Mathematics Education Research Group (OW & OC)State University of UtrechtThe Netherlands

Personalised recommendations