Survey and Justification

Part of the Mathematics Education Library book series (MELI, volume 3)


The first part of the present chapter contains a brief sketch of the prehistory of our publication. It deals with the various phases we went through in the Wiskobas project before arriving at the conception of a three-dimensional goal description within the frame of innovation. In the second part we survey the contents of the present study. The third part aims at justifying our attempt at answering the query about content and form of goal descriptions for mathematics instruction such as are presented in our publication. Finally we conclude with a summary of starting points, goals and methods of goal descriptions.


Mathematics Instruction General Objective Process Goal Exploratory Phase Contextual Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, M.: ‘Rules without reasons? Some evidence relating to the teaching of routine skills to low-attainers in mathematics’, International Journal of Mathematics Education in Science and Technology 13 (1982), 449–461.CrossRefGoogle Scholar
  2. Foxman, D. D. (ed.): Mathematical development, London 1980.Google Scholar
  3. Hart, K. (ed.): Children’s understanding of mathematics: 11–16, London 1981.Google Scholar
  4. 2.
    Walther, G.: ‘Acquiring mathematical knowledge’, Mathematical Teaching, Nr. 101 (1982), 10–12.Google Scholar
  5. Hutton, J.: ‘Memoirs of a math teacher 5. Logical reasoning’, Mathematics Teaching, Nr B1 (1977), 8–12Google Scholar
  6. 3.
    Engen, H. van and Gibb, E. G.: General mental functions associated with division, Cedar Falls 1956.Google Scholar
  7. 4.
    Kratzer, R. O. and Willoughby, S. S.: ‘A comparison of initially teaching division employing the distributive and Greenwood algorithms with the aid of a manipulative material’, Journal for Research in Mathematics Education 4 (1973), 197–205.CrossRefGoogle Scholar
  8. Laing, R. A. and Meijer, R. A.: ‘Transitional division algorithms’, Arithmetic Teacher 29 (1982), 10–13.Google Scholar
  9. 4.
    Erlwanger, S. H.: ‘Benny’s conception of rules and answers in IPI-mathematics’, The Journal of Children’s Mathematical Behavior 1 (1973), 7–26.Google Scholar
  10. Erlwanger, S. H.: ‘Case studies of children’s conceptions of mathematics’, The Journal of Children’s Mathematical Behavior 1 (1975), 157–283.Google Scholar
  11. 5.
    Teule-Sensacq, P. and Vinrich, G.: ‘Résolution de problèmes de division au cycle élémentaire dans deux types de situations didactiques’, Educational Studies in Mathematics 13 (1982), 177–203.CrossRefGoogle Scholar
  12. 6.
    Kühnel, J.: Neubau des Rechenunterricht II,Leipzig: Klinkhardt 1925/5.Google Scholar
  13. 7.
    Plunkett, S.: ‘Decomposition and all that rot’, Mathematics in School (1979), p. 3.Google Scholar
  14. 8.
    Dekker, A., Heege H. ter, and Treffers, A.: Cijferend vermenigvuldigen en delen volgens Wiskobas, Utrecht 1982.Google Scholar
  15. 9.
    Resnick, L. B. and Ford, W.: The psychology of mathematics for instruction, Hillsdale 1981.Google Scholar
  16. Gagné, R. M.: ‘Some issues in the psychology of mathematics instruction’, Journal for Research in Mathematics Education 14 (1983), 19–29.CrossRefGoogle Scholar
  17. Gal’perin, P. J.: ‘Stages in the development of mental acts’, in Cole, M. Maltzman, J (eds.), Handbook of contemporary soviet psychology, London 1969, 149–173.Google Scholar
  18. Gal’perin, P. J. and Talyzina, N. F.: ‘Die Bildung erster geometrischer Handlungen des Schülers’, in Gal’perin, P. J. and Leontjew (eds.), Probleme der Lerntheorie, Berlin 1972.Google Scholar
  19. Davydov, V. V.: ‘Veber das Verhältnis zwischen den abstrakten und den konkreten Kentnissen im Unterricht’, in Lompscher, J. (ed.), Probleme der Ausbildung geistiger Handlungen, Berlin 1972.Google Scholar
  20. Davydov, V. V.: ‘Logical and psychological problems of elementary mathematics as an academic subject’, in Steife, L. P. (ed.), Soviet studies in the psychology of learning and teaching mathematics, Chicago 1975, pp. 109–207.Google Scholar
  21. 12.
    Smaling, A. and Treffers, A.: Stadsplan, IOWO publication, Utrecht 1971.Google Scholar
  22. 13.
    Treffers, A.: ‘De Klok’, in Meijer, G. H. (ed.), Matematika, IOWO publication, Utrecht 1973, pp. 7–27.Google Scholar
  23. Treffers, A. and Wijdeveld, E.: ‘Leerplanologle. Over doelstellingen van het wiskundeonderwijs’, in Wiskobas Bulletin 2 (1973), 983–991.Google Scholar
  24. 15.
    Treffers, A.: De kiekkas van Wiskobas. Beschouwingen over uitgangspunten en doelstellingen van het aanvangs-en vervolgonderwijs in de wiskunde, IOWO curriculum development publication 1, Utrecht 1975.Google Scholar
  25. 16.
    See Bloom, B. S.: Human characteristics and school learning,New York 1976, p. 217.Google Scholar
  26. 17.
    Resnick, L. B. and Ford, W.: The psychology of mathematics for instruction, Hillsdale 1982.Google Scholar
  27. 18.
    Schoenfeld, A. H.: ‘The wild, wild, wild, wild world of problem solving: A review of sorts’, For the Learning of Mathematics 3 (1983), 40–47.Google Scholar
  28. 19.
    Cobb, P. and Steffe, L. P.: ‘The constructivist researcher as teacher and model builder’, Journal for Research in Mathematics Education 14 (1983), 95–101.CrossRefGoogle Scholar
  29. Carpay, J. A. M.: ‘Westeuropese benadering van onderwijsleerprocessess’, in De Corte, E. (ed.), Onderzoek van onderwijsleerprocessen,s Gravenhage 1982, 28–36.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  1. 1.Mathematics Education Research Group (OW & OC)State University of UtrechtThe Netherlands

Personalised recommendations