One-Dimensional Goal Description

Part of the Mathematics Education Library book series (MELI, volume 3)


An unsuspecting reader might believe that it would not be asking too much to describe the goals of a certain piece of mathematical material like “Grains on the Chessboard” or even of the whole of mathematics education as it is pursued by Wiskobas. It can be presumed that those who develop any such kind of material will proceed in an orderly fashion and have definite aims in mind: i.e., first one would determine the objectives and then construct the means to achieve them.


Mathematics Education Mathematical Objective Personal Development Process Goal General Goal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For the topic of goal-means see for example: MacDonald-Ross, M.: Behavioral objectives: A critical review’, in Instructional Science 2 (1973), 1–52.Wise, R. J.: The use of objectives in curriculum planning. A critique of planning by objectives’, Curriculum Theory Network 5 (1976), 280–290.Google Scholar
  2. 2.
    Lists of terms are found in, among others: McAshan, H. H.: The goals approach to performance objectives, Philadelphia 1974, p. 30.Google Scholar
  3. 3.
    For references concerning the overview in the first sub-section of this chapter we refer to the relevant sections in the following chapters.Google Scholar
  4. 4.
    Corte, E. de, Geerlings, C. T., Lagerwey, N. A. J., Peters, J. J., and Vandenberghe, R.: Beknopte didaxologie, Groningen 1972, p. 35.Google Scholar
  5. 5.
    Tyler, R. W.: Basic principles of curriculum and instruction, Chicago 1970.Google Scholar
  6. 6.
    A typical quote in this connection: The Mathematics, Architecture and Science Society at Leyden with the device “Mathematics is the mother of science” awarded gold to a paper in 1797 with the motto: Knowledge of geometry is the first step toward becoming a reasonable man. Dapperen, D. van: Vormleer,Amsterdam 1825, p. 34. An extensive profile of these, developments can be found in the classic: Klein, F. and Schimmack, R.: Der Mathematische Unterricht an den Höheren Schulen I, Leipzig 1907, pp. 71 ff.Google Scholar
  7. 7.
    E. W. Beth held an inquiry amongst members of the mathematics working group of the “Werkgemeenschap tot Vernieuwing van Opvoeding en Onderwijs” where, among others, the points quoted were enumerated See Google Scholar
  8. 8.
    Beth, E. W.: Doel en zin van het meetkundeonderwijs, Euclides 14 (1939), 236–244. Opponents of this type of reflection on objectives as held by Dijksterhuis, H. J. E. Beth and Verrijp in the 1920–1940 period, include Mannoury and Van Dantzig. Arithmetic education was ascribed the same formal values. For an overview see: Turkstra, H. and Timmer, J. K.: Rekendidactiek, Groningen-Djakarta 1953.Google Scholar
  9. 9.
    Turkstra, H.: Psychologisch-didaktische problemen bil het onderwijs in de wiskunde aan de middelbare school, Groningen 1934, p. 19.Google Scholar
  10. 10.
    Cuypers, K.: Het aankweeken van het wiskundig denken, Antwerpen 1940, p. 29, K.: “Het aankweeken van het wiskundig denken, Antwerpen 1940, p. 29. ” F. (initial only): ’De wiskunde op de MMS’, Euclides 14 (1938), p. 31.Google Scholar
  11. 11.
    Cuypers, K.: Her aankweeken van her wiskundig denken, Antwerpen 1940, p. 193.Google Scholar
  12. 12.
    Turkstra, H.: Psychologisch-didaktische problemen by het onderwijs in de wiskunde aan de middelbare school, Groningen 1934, p. 34.Google Scholar
  13. 13.
    Reindersma, W.: Over her inleidend onderwijs in de meetkunde,Groningen — The Hague 1926, pp. 16 ff.Google Scholar
  14. 14.
    See the views of Ehrenfest-Afanassjewa in: Kan het wiskunde-onderwijs tot de opvoeding van her denkvermogen bijdragen?,Purmerend 1951.Google Scholar
  15. 15.
    These are mainly the views of Van Hiele-Geldof and Van Hiele. See Hiele, P. M. van: De problematiek van her inzicht,Amsterdam, pp. 88–102.Google Scholar
  16. 16.
    For the views of Kohnstamm on the learning of methods of solution, and Langeveld’s theory on knowledge domains see Google Scholar
  17. 17.
    Kohnstamm, Ph.: Keur uit her didactisch werk, Groningen 1952. Langeveld, M. J.: Inleiding tot de studie der paedagogische psychologie van de middelbareschoolleeftijd, Groningen 1954. x Sluis, A. van der: ’Computerkunde bij het AVO, Euclides 46 (1970), 81–92.Google Scholar
  18. 18.
    For the meaning of number systems see the theme “The Land of Eight” in Chapter IV. In short, the notation for the binary system is: 10101’in the decimal system is 21 In the binary system one has two digits at one’s disposal (0 and 1). In base 3 system there are three (0, 1 and 2), and so on.Google Scholar
  19. 19.
    This view is found in: Beth, E. W.: Doel en zin van het meetkunde onderwijs, Euclides 14 (1939).Google Scholar
  20. 20.
    Goffree, F. and Wijdeveld, E. J.: ‘Een praktikum wiskunde’, Euclides 44 (1966), 193–219.Google Scholar
  21. 21.
    Much attention to the socialising aspect has been paid by Wiskivon (mathematics in secondary education). See: Sweers, W. (ed.): Leerplanontwikkeling onderweg I, IOWO publication, Utrecht 1977.Google Scholar
  22. 22.
    As indicated in Chapter I (see Note 12) this refers to the 6–12 age group. Kindergarten education has been paid more attention since 1975. See articles by Jeanne de Gooijer-Quint in the Wiskobas Bulletin.Google Scholar
  23. 23.
    See: Proeve van een leerplan for het basisonderwijs B: Rekenen, Kohnstamminstitute, Groningen 1968, p. 7.Google Scholar
  24. 24.
    Dam, P. R. L. van: Sommetjes in hokjes. Einddoelstellingen van het rekenonderwijs op de basisschool, CITO publication, Arnhem 1975.Google Scholar
  25. 25.
    The idea is not a new one, and was popular in geometry instruction, searching for a “definitive” pseudo-deductive treatment. Names include Reindersma, Wolda, EhrenfestAfanassjewa, Van Hiele-Geldof and Van Hiele. The work of the last two especially was theoretically based and resulted in a distinction of learning levels. See Hiele, P. M. van: Begrip en inzicht, Werkboek van de wiskundedidaktiek,Purmerend 1973.Google Scholar
  26. 26.
    A very strict vertical planning according to the spiral idea is used by Dienes. See Dienes, Z. P.: Les six étapes du processus d’apprentissage en mathématique,Paris 1970.Google Scholar
  27. 27.
    The problems will arise without any doubt, since modern arithmetic and mathematical methods like ‘Elementair Wiskundig Rekenen’, Hoi, Rekenen, Getal in beeld’, and Taltaal’ Operatoir Rekenen’, `De Wereld in Getallen, Rekenwerk and Rekenen en Wiskunde’, which differ from existing methods in several ways, will probably do well in the coming years.Google Scholar
  28. 28.
    Kirsch, A.: `Vorschläge zur Behandlung von Wachstumsprozessen und Exponentialfunktionen im Mittelstufunterricht’, Didaktik der Mathematik 4 (1976), 257–285.Google Scholar
  29. 29.
    A treatment of similar ideas is found in a paper by the Schools Council Sixth Form Mathematics Project in Mathematics Applicable,London 1975.Google Scholar
  30. 30.
    For an extensive profile see Moor, E. de and Treffers, A.: `Het aanvankelijke meetkunde-onderwijs I, II, and III’, Euclides 50 (1974), 41–61, and 81–99.Google Scholar
  31. 31.
    An extensive analysis of text books of the “New Math” trend is found in Wiskobas Bulletin 7 (1978), Nr. 4.Google Scholar
  32. 32.
    For an overview see Pollak, H. O.: `The interaction between mathematics and other school subjects’, paper for the Third Congress on Mathematics Education, Karlsruhe 1976.Google Scholar
  33. 33.
    An extensive reflection on these matters is found in: Measurement in School Mathematics’, Yearbook of the National Council of Teachers of Mathematics, Reston 1976.Google Scholar
  34. 34.
    For the language aspect of mathematics see Brinke, J. S. ten: Moedertaalonderwijs en toch geen “Nederlands”’, Euclides 45 (1970), 327–336.Google Scholar
  35. 35.
    A clipping from Het Parool May 15th 1973. Articles on population increase are quite frequent.Google Scholar
  36. 36.
    For an interesting reflection on the grains problem and the use of calculators see: Papy, G.: Schaakbord en zakrekenmachine’, Nico, Nr. 20 (1976), 67–80. For other possibilities in working with a calculator see Blij, F. van der: `Voor minder dan twee tientjes rekenpret’, Wiskrant, Nr. 9 (1977), 10–11.Google Scholar
  37. 37.
    Similar historically coloured reflections on general objectives for mathematics education in West Germany and Great Britain, respectively, are found in:Google Scholar
  38. 38.
    Lenné, H. Analyse der Mathematikdidaktik in Deutschland,Stuttgart 1969. McNelis, S. and Dunn, J. A.: Why teach mathematics?’ International Journal of Mathematical Education in Science and Technology 8 (1977), 175–184. n For other reflections on general objectives see Google Scholar
  39. 39.
    Bigalke, H.: Zur “gesellschaftlichen Relevanz” der Mathematik im Schulunterricht. Aufgabe und Ziele des Mathematikunterrichts’, Zentralblatt für Didaktik der Mathematik 8 (1976), 25–34.Google Scholar
  40. 40.
    Braunfeld, P. and Kaufman, B.: `Mathematical education: A viewpoint’, International Journal of Mathematical Education in Science and Technology 3 (1972), 287–291.Google Scholar
  41. 41.
    Christiansen, B.: `Induction and deduction in the learning of mathematics and in mathematical instruction’, Educational Studies in Mathematics 2 (1969), 139–160.Google Scholar
  42. 42.
    Johnson, D. A. and Rising, G. R.: Guidelines for Teaching Mathematics, Belmont 1969. Kratz, J.: `Aufgaben und Möglichkeiten des heutigen Mathematikunterrichts an den allgemeinbildenden Schulen’, Zentralblatt für Didaktik der Mathematik 6 (1974), 116–120.Google Scholar
  43. 43.
    Lenné, H. Analyse der Mathematikdidaktik in Deutschland,Stuttgart 1969.Google Scholar
  44. 44.
    Servais, W.- Objectives de l’enseignement de la mathématique (mimeo), 1975.Google Scholar
  45. 45.
    Watson, F. R.: `Aims in mathematical education and their implications for the training of mathematics teachers’, International Journal of Mathematics Education in Science and Technology 2 (1971), 105–119.Google Scholar
  46. 46.
    Winter, H.: Vorstellungen zur Entwicklung von Curricula für den Mathematikunterricht in der Gesamtschule’, in Beiträge zum Lernzielproblem, Ratingen 1972.Google Scholar
  47. 47.
    Winter, H.: Allgemeine Lernziele für den Mathematikunterricht’, Zentralblatt für Didaktik der Mathematik 6 (1974), 106–116. Wittenberg, A. I.: Bildung und Mathematik, Stuttgart 1963.Google Scholar
  48. 48.
    A more extensive treatment, directed especially to the problems in developing countries, is found in: d’Ambrosio, U.: `Overall goals and objectives for mathematical education’ (mimeo), 1976; published in the Proceedings of the Third International Congress on Mathematics Education,1977.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  1. 1.Mathematics Education Research Group (OW & OC)State University of UtrechtThe Netherlands

Personalised recommendations