Advertisement

Starting Points

Chapter
  • 100 Downloads
Part of the Mathematics Education Library book series (MELI, volume 3)

Abstract

We begin this chapter with a short discussion about the heart of mathematical activity, i.e., about what Wiskobas considers to be the essence of mathematical activity in primary school mathematics. The actual process of deciding on that essential activity is not discussed here.1 Therefore when speaking of “the” mathematical activity in this study, we shall mean that activity in mathematics education which is in accordance with Wiskobas’ ideals.

Keywords

Mathematics Education Mathematical Activity Short Route Mathematics Lesson Route Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polya, E.: Mathematics and Plausible Reasoning, Vol. I: Induction and Analogy in Mathematics, Princeton 1967; Vol. II: Patterns of Plausible Inference, Princeton 1968.Google Scholar
  2. Polya, E.: Mathematics Discovery, Vol. I, New York 1962; Mathematics Discovery, Vol. II, New York 1965.Google Scholar
  3. 3.
    Melis, J. and Lorme-Bakker, H. de: `Kleuters en wiskunde’, in Wiskobas Bulletin 2 (1973), p. 648.Google Scholar
  4. 4.
    Goffree, F. and Jansen H. (eds.): 20 gevallen van stagebegeleiding: internal IOWO publication, Utrecht 1977.Google Scholar
  5. 5.
    O’Brien, T. C.: `Some notes on multiplication of whole numbers’, Educational Studies in Mathematics 3 (1970), 63–68.Google Scholar
  6. Jong, R. de (ed.): De abacus. An important aid for mathematics instruction in the primary school, IOWO curriculum development publication 6, Utrecht, 1977, pp. 96–112.Google Scholar
  7. 6.
    Sawyer, W. W.: Wegwijs in de wiskunde, Utrecht 1962, pp. 11–12.Google Scholar
  8. 7.
    Kirsch, A.: Ein-eindeutige Zuordnungen im 5. Schuljahr: Begründung des Zahlbegriffs oder Forderung der Kombinationsfähigkeit?’, Die Schulwarte 8 (1974), 29–36.Google Scholar
  9. 9.
    Goffree, F.: Kijken, doen, denken en zien. Analyse van wiskundig-didactisch werk van studenten P. A., internal IOWO publication 1976.Google Scholar
  10. Goffree, F.: Teilen. Analyse van wiskundigdidactisch werk van studenten P. A., internal IOWO publication, Utrecht 1977.Google Scholar
  11. Goffree, F.: `Johan, A teacher training freshman studying mathematics and didactics’, Educational Studies in Mathematics 8 (1977), 117–153.CrossRefGoogle Scholar
  12. 10.
    Swenson, E. J.: Making primary arithmetic meaningful to children, Washington 1961.Google Scholar
  13. Thom, R.: `Modern mathematics: Does it exist?’, in Howson, A. G. (ed.), Developments in mathematical education, Cambridge 1973, pp. 194–213.Google Scholar
  14. 11.
    Jong, R. de (ed.): Bussen en blokken (Worksheets for mathematics education in the primary school), IOWO curriculum development publication 3, Utrecht 1976.Google Scholar
  15. Jong, R. de (ed.): Inter-lokaal (working material for mathematics education in the primary school), IOWO curriculum development publication 4, Utrecht 1976.Google Scholar
  16. 13.
    Nijhof, W. `Van externe naar interne differentiatie?’ Pedagogische Studien 53 (1976), 391–405.Google Scholar
  17. 14.
    Ehrenfest-Afanassjewa, T.: Wiskunde. Didactische opstellen, Groningen 1960.Google Scholar
  18. Dormolen, J. van: `Over het leren begrijpen wat een bewijs is’, Euclides 50 (1975), 247–253.Google Scholar
  19. 15.
    Râde, L. (ed.): The teaching of probability and statistics, New York 1970.Google Scholar
  20. Dienes, Z. P.: An experimental study of mathematics learning, London 1963.Google Scholar
  21. 16.
    Bruiser, J. S.: The process of education, New York 1960.Google Scholar
  22. Bruner, J. S.: Toward a Theory of Instruction, New York, 1966, p. 44. Google Scholar
  23. 18.
    Freudenthal, H.: Weeding and sowing. Preface to a science of mathematical education, Dordrecht 1978, pp. 233 ff.Google Scholar
  24. Hoffman, N.: `Pascal’s Triangle’, The Arithmetic Teacher 21 (1973), 190–199.Google Scholar
  25. 19.
    Pollak, H. O.: `The interaction between mathematics and other school subjects’, paper for the Third International Congress of Mathematics Education, Karlsruhe 1976.Google Scholar
  26. 20.
    Bruner, J. S.: The process of education, New York 1960, 55–69.Google Scholar
  27. Fishbein, E.: `Intuition, structure and heuristic methods in the teaching of mathematics’, in Howson, A. G. (ed.), Developments in Mathematics Education,Cambridge 1973, pp. 222–233.CrossRefGoogle Scholar
  28. Blankertz, H.: Theorien and Modelle der Didaktik, München 1969.Google Scholar
  29. Meyer, H. L.: Einführung in die Curriculum-Methodologie, München 1972.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  1. 1.Mathematics Education Research Group (OW & OC)State University of UtrechtThe Netherlands

Personalised recommendations