Skip to main content

Electric Fields in the Magnetosphere and the Origin of Trapped Radiation

  • Conference paper
  • First Online:
Solar-Terrestrial Physics/1970

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 29))

Abstract

According to experimental data there are essential differences in the dynamics of trapped particles with magnetic drift periods more than and less than ≈ 1 h. The behaviour of the particles with fast drift (radiation belt particles) can be well described by the theory of diffusion resulting from sudden impulses. The considerably faster rate of transport of lower-energy particles implies the existence of low-frequency electric fields of large amplitude, the influence of which on energetic particles is reversible. The low-frequency fields are one of many interconnected effects, including particle variations, induction of ionospheric current systems, development of active forms of auroras, formation of D st, etc. A probable cause of these events is the appearance and evolution of a plasma ring asymmetric in longitude in the trapped radiation region. The asymmetry may be brought about both by particle injection into the magnetosphere and by penetration of an external electric field into the trapped radiation region. On the assumption that the ionosphere is connected with the magnetosphere by currents along the lines of force, ensuring quasineutrality, and that an electric potential develops when these currents close in the E-layer, it is possible to show that the electric fields and current systems DP-1 and DP-2 are the lowest modes of the system of eigenfunctions of the problem of relaxation of an asymmetric plasma cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasofu, S.-I., Chapman, S.: 1961, ‘Ring Current, Geomagnetic Disturbances and Radiation Belts’, J. Geophys. Res. 66, 1321.

    Article  ADS  Google Scholar 

  • Akasofu, S.-I., Chapman, S.: 1964, ‘On the Asymmetric Development of Magnetic Storms’, Planetary Space Sci. 12, 607.

    Article  ADS  Google Scholar 

  • Akasofu, S.-I., Chapman, S., Meng, C. J.: 1965, The Polar Electrojet, J. Atmospheric Terr. Phys. 27, 1275.

    Article  ADS  Google Scholar 

  • Alfven, H., Fälthammar, C.-G.: 1963, Cosmical Electrodynamics, Oxford, Clarendon Press.

    MATH  Google Scholar 

  • Axford, W. I.: 1969, ‘Magnetospheric Convection’, in Magnetospheric Physics (ed. by D. J. Williams, G. D. Mead), American Geophysical Union, p. 421. (also Rev. Geophys. 7.)

    Google Scholar 

  • Axford, W. I., Hines, C. O.: 1961, ‘A Unifying Theory of High-Latitude Geophyscial Phenomena and Geomagnetic Storms’, Can. J. Phys. 39, 1433.

    Article  ADS  Google Scholar 

  • Cahill, L. J.: 1966, ‘Inflation of the Inner Magnetosphere During a Magnetic Storm’, J. Geophys. Res. 71, 4505.

    Article  ADS  Google Scholar 

  • Chang, D. B., Pearlstein, L. D., Rosenbluth, M. N.: 1965, ‘On the Interchange Stability of the Van Allen Belt’, J. Geophys. Res. 70, 3085.

    Article  ADS  MathSciNet  Google Scholar 

  • Cumming, W. D., Coleman, P. I.: 1968, ‘Simultaneous Magnetic Field Variations at the Earth’s Surface and Synchronous Equatorial Distance; Bay Associated Events’, Radio Sci. 3, 758.

    Article  ADS  Google Scholar 

  • Davis, T. N., Parthasarathy, R.: 1967, ‘The Relationship Between Polar Magnetic Activity DP and Growth of the Geomagnetic Ring Current’, J. Geophys. Res. 72, 5828.

    ADS  Google Scholar 

  • Dungey, J. W.: 1961, ‘Interplanetary Magnetic Field and Auroral Theory’, Phys. Rev. Letters 6, 47.

    Article  ADS  Google Scholar 

  • Eviatar, A., Wolf, R. A.: 1968, ‘Tranfer Processes in the Magnetopause’, J. Geophys. Res. 73, 5562.

    ADS  Google Scholar 

  • Fairfield, D. H.: 1968, ‘The Average Magnetic Field Configuration of the Outer Magnetosphere’, J. Geophys. Res. 73, 7329.

    Article  ADS  Google Scholar 

  • Fälthammar, C.-G.: 1965, ‘Effects of the Time-Dependent Electric Fields on Trapped Radiation’, J. Geophys. Res. 70, 2503.

    Article  ADS  MathSciNet  Google Scholar 

  • Fejer, J. A.: 1961, ‘The Effects of Energetic Trapped Particles on Magnetospheric Motions and Ionospheric Current’, Can. J. Phys. 39, 1409.

    Article  ADS  Google Scholar 

  • Feldstein, Y. I.: 1969, ‘Polar Auroras and Polar Substorms’, in Magnetospheric Physics (ed. by D. J. Williams, L. D. Mead ), American Geophysical Union, p. 179.

    Google Scholar 

  • Feldstein, Y. I., Zaitsev, A. N.: 1967, ‘Magnetic Field Variations in High Latitudes in Summer During I.G.Y.’, Geomagnetizm i Aeronomiya 7, 204.

    Google Scholar 

  • Feldstein, Y. I., Zaitsev, S. N.: 1968, ‘Sd-Variations of the Magnetic Field in High Latitudes in the Different Intensity of Magnetic Disturbances’, Ann. Geophys. 24, 1.

    Google Scholar 

  • Frank, L. A.: 1970a, ‘On the Presence of Low Energy Protons in the Interplanetary Medium’, J. Geophys. Res. 75, 707.

    Article  ADS  Google Scholar 

  • Frank, L. A.: 1970b, ‘Direct Detection of Asymmetric Injection of Extra-Terrestrial “Ring Current” Protons into the Outer Radiation Zone’, J. Geophys. Res. 75, 1263.

    Article  ADS  Google Scholar 

  • Gringauz, K. E.: 1969, ‘Low-Energy Plasma in the Magnetosphere’, in Magnetospheric Physics (ed. by D. J. Williams, G. D. Mead), Rev. Geophys. 7, 339.

    Google Scholar 

  • Gurevich, A. V., Tsedilina, E. E.: 1969a, ‘Dynamics of Inhomogeneities of Fast Electrons and Ions in the Earth’s Magnetosphere (I.)’, Geomagnetizm i Aeronomiya 9, 458.

    Google Scholar 

  • Gurevich, A. V., Tsedilina, E. E.: 1969b, ‘Dynamics of Inhomogeneities of Fast Electrons and Ions in the Earth Magnetosphere (II)’, Geomagnetizm i Aeronomiya 9, 642.

    Google Scholar 

  • Heppner, J. P., Wescott, E. M., Stolarik, J. D.: 1969, ‘Auroral and Polar Cap Electric Fields from Barium Releases,’ Goddard Space Flight Center Report X-612-69-411.

    Google Scholar 

  • Hultqvist, B.: 1969, ‘Auroras and Polar Substorms’, Rev. Geophys. 7, 129.

    Article  ADS  Google Scholar 

  • Lerche, I.: 1967, ‘On the Boundary Layer Between a Warm Streaming Plasma and a Confined Magnetic Field’, J. Geophys. Res. 72, 5295.

    Article  ADS  Google Scholar 

  • Lew, J. S.: 1961, ‘Drift Rate in a Dipole Field’, J. Geophys. Res. 66, 2681.

    Article  ADS  Google Scholar 

  • Nishida, A.: 1968a, ‘Geomagnetic DP-2 Fluctuations and Associated Magnetospheric Phenomna’, J. Geophys. Res. 73, 1795.

    Article  ADS  Google Scholar 

  • Nishida, A.: 1968b, ‘Coherence of Geomagnetic DP-2 Fluctuations with Interplanetary Magnetic Variations’, J. Geophys. Res. 73, 5549.

    Article  ADS  Google Scholar 

  • Parker, E. N.: 1966, ‘Nonsymmetric Inflation of a Magnetic Dipole’, J. Geophys. Res. 71, 4485

    Article  ADS  Google Scholar 

  • Tverskoy, B. A.: 1968, Dynamics of the Earth’s Radiation Belts (in Russian), Nauka Publishing House, Moscow.

    Google Scholar 

  • Tverskoy, B. A.: 1969a, ‘Main Mechanisms in the Formation of the Earth’s Radiation Belts’, Rev. Geophys. 7, 219.

    Article  ADS  Google Scholar 

  • Tverskoy, B. A.: 1969b, ‘On the Electric Fields in the Earth Magnetosphere’, Dokl. Akad. Nauk USSR 188, 575.

    ADS  Google Scholar 

  • Vernov, S. N., Kuznetsov, S. N., Sosnovets, E. N., Tverskaya, L. V., Teltsov, M. V., Khorosheva O. V.: 1971, ‘Acceleration of Electrons and Protons in the Earth’s Magnetosphere During Magnetic Disturbances’, Space Research XI, (in press).

    Google Scholar 

  • Winckler, J. R.: 1969, ‘The Origin of Energetic Electrons in the Earth’s Environment’, in Proceedings of the International Seminar on the Space Physics Investigation by Cosmic Rays, Leningrad, p. 133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. R. Dyer

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tverskoy, B.A. (1972). Electric Fields in the Magnetosphere and the Origin of Trapped Radiation. In: Dyer, E.R. (eds) Solar-Terrestrial Physics/1970. Astrophysics and Space Science Library, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3693-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3693-5_32

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8154-2

  • Online ISBN: 978-94-009-3693-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics