Skip to main content

Theoretical Approaches to the Rheology of Concentrated Dispersions

  • Chapter
Future Directions in Polymer Colloids

Part of the book series: NATO ASI Series ((NSSE,volume 138))

  • 246 Accesses

Abstract

Suspensions of submicron particles in a liquid respond to flow in a variety of ways depending on the size, concentration, and shape of the particles and the nature and magnitude of the interparticle potentials. The most dramatic phenomena occur when one of the interparticle forces dominates, e.g., strong van der Waals forces for aqueous latices at high ionic strengths1 or carbon black particles in mineral oil2, long range electrostatic repulsions for colloidal crystals3,4, and the interactions between adsorbed polymer layers in sterically stabilized suspensions near closest packing5,6. Even with hard sphere interactions though, the rheology is significantly shear-thinning at moderate concentrations7,8. In each case the non-Newtonian phenomena, whether elastic or pseudoplastic, derive from many-body interactions involving both hydrodynamic and interparticle forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunter RJ: Adv. Coll. Inter. Sci. 17 197 (1982).

    Article  CAS  Google Scholar 

  2. Mewis J: Suspension Rheology. IFPRI Report: FRR 0601, October 1, 1985.

    Google Scholar 

  3. Buscall R; Goodwin JW; Hawkins MW; and Ottewill RH: J. Chem. Soc. Far. Trans. I 78, 2983, 2889 (1982).

    Google Scholar 

  4. Lindsay HM and Chaikin PM: J. Chem. Phys. 76, 377 (1982).

    Article  Google Scholar 

  5. Hoffman RL: Adv. Coll. Inter. Sci. 17, 161 (1982).

    Article  CAS  Google Scholar 

  6. Willey SJ and Macosko CW: J. Rheol. 22

    Google Scholar 

  7. Krieger IM: Adv. Coll. Inter. Sci. 3, 111 (1972).

    Article  CAS  Google Scholar 

  8. de Kruif CG; van Iersel EMF; Vrij A; and Russel WB: J. Chem. Phys. 83, 4717 (1985).

    Article  Google Scholar 

  9. Batchelor GK: J. Fluid Mech. 41, 545 (1970).

    Article  Google Scholar 

  10. Batchelor GK: J. Fluid Mech. 83, 97 (1977).

    Article  Google Scholar 

  11. Bossis G and Brady JF: J. Chem. Phys. 80, 5141 (1984); J. Fluid Mech. 155, 105 (1985).

    Article  CAS  Google Scholar 

  12. Ohtsuki T: Physica A 108, 441 (1981).

    Article  Google Scholar 

  13. Russel WB and Gast AP: J. Chem. Phys. 84, 1815 (1986).

    Article  CAS  Google Scholar 

  14. White DA and Huang JS: in Kinetics of Aggregation and Gelation (eds., Family P and Landau DP). Elsevier, 1984, p. 19.

    Google Scholar 

  15. Schaeffer DW; Martin JE; Wiltzius P; and Cannell DS: Phys. Rev. Lett. 52, 2371 (1984).

    Article  Google Scholar 

  16. Sonntag RC and Russel WB: J. Coll. Inter. Sci. 113 399 (1986).

    Article  CAS  Google Scholar 

  17. Family F and Landau DP (eds): Kinetics of Aggregation and Gelation. Elsevier, 1984.

    Google Scholar 

  18. Kirkpatrick S: Rev. Mod. Phys. 45, 574 (1973).

    Article  Google Scholar 

  19. Havlin S; in Kinetics of Aggregation and Gelation (eds., Family F and Landau DP). Elsevier, 1984, p. 145.

    Google Scholar 

  20. Sahimi M; Scriven LE; and Davis HT: J. Phys. C.: Solid State Phys. 17, 1941 (1984).

    Article  CAS  Google Scholar 

  21. Feng S and Sen PN: Phys. Lett. 52, 261 (1984).

    Article  Google Scholar 

  22. Feng S; Thorpe MF and Gaboczi E: Phys. Rev. B 31, 276 (1985).

    Article  CAS  Google Scholar 

  23. Mall S and Russel WB: J. Rheol. (accepted).

    Google Scholar 

  24. Brinkman HC: Appl. Sci. Res. A1, 27 (1947).

    CAS  Google Scholar 

  25. Kim S and Russel WB: J. Fluid Mech. 154, 269 (1985).

    Article  CAS  Google Scholar 

  26. Adler PM and Mills PM: J. Rheol. 23, 25 (1979).

    Article  Google Scholar 

  27. Cates ME and Witten TA: Phys. Rev. Lett. (submitted).

    Google Scholar 

  28. Sonntag RC and Russel WB: J. Coll. Inter. Sci. (in press) (1986).

    Google Scholar 

  29. Buscall R: Colloids and Surfaces 5, 269 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Russel, W.B. (1987). Theoretical Approaches to the Rheology of Concentrated Dispersions. In: El-Aasser, M.S., Fitch, R.M. (eds) Future Directions in Polymer Colloids. NATO ASI Series, vol 138. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3685-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3685-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8150-4

  • Online ISBN: 978-94-009-3685-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics