Skip to main content

Materials Science of Fracture Processes

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 130))

Abstract

Experimental values of the fracture strengths of materials are commonly some two orders of magnitude smaller than the theoretical limit of approximately one-tenth of Young’s modulus (0.1E). The low experimental values are attributed to the presence in materials of cracks or crack-like defects which are able to provide high stress-concentrations. The cracks may be present ab initio as a consequence of manufacturing processes; they may be nucleated by plastic deformation; or they may be introduced deliberately, e.g. by fatigue, to provide standard precracks in testpieces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griffith, A.A. Phil. Trans. Roy. Soc. 1920, A 221, p.163

    Google Scholar 

  2. Marsh, D. Proc. Roy. Soc. 1964, A 282, p.33

    Google Scholar 

  3. Kramer, J. and other authors in Adv. in Polymer Sci. 52/53 ed. H.H. Kausch, Springer-Verlag (Berlin) 1983

    Google Scholar 

  4. Hirth, J. and Lothe, J. “Theory of Dislocations” McGraw-Hill (New York) 1968

    Google Scholar 

  5. Nabarro, F.R.N. “Theory of Crystal Dislocations” Oxford (Clarendon Press) 1967

    Google Scholar 

  6. Cottrell, A.H. “Theory of Crystal Dislocations” Blackie and Son Ltd., 1964

    Google Scholar 

  7. Irwin, G.R. Trans ASME Jnl.Appl.Mech. 1957, 24, p.361

    Google Scholar 

  8. Rice, J.R. “Fracture: An Advanced Treatise” ed. H. Liebowitz, Academic Press 1968 Vol 2 p.191

    Google Scholar 

  9. Hutchinson, J. Jnl.Mech.Phys.Solids 1968, 16, pp.13 and 337

    Google Scholar 

  10. Knott, J.F. “Fundamentals of Fracture Mechanics” Butterworths (London) 1973

    Google Scholar 

  11. Kelly, A., Tyson, W.R. and Cottrell, A.H. Phil.Mag. 1967 15 p.567

    Article  CAS  Google Scholar 

  12. Rice, J.R. and Thomson, R. Phil.Mag 1974, 29, p.73

    Article  CAS  Google Scholar 

  13. Knott, J.F. “Atomistics of Fracture” Ed. R.M. Latanision and J.R. Pickens (Plenum Publishing Corporation) p.209

    Google Scholar 

  14. Rice, J.R. “Effect of Hydrogen on Behaviour of Materials” ed. A.W. Thompson and I.M. Bernstein Met.Soc. AIME, 1976, p. 455

    Google Scholar 

  15. Curry, D.A. and Knott, J.F. Met.Soc. 1978, 12, p.511

    Article  CAS  Google Scholar 

  16. Bowen, P., Druce, S.G. and Knott, J.F. Acta Met, 1976, 34, p. 1121

    Article  Google Scholar 

  17. Smith, E. Proc. Conf. on Physical Basics of Yield and Fracture, Inst. Physics and Physical Society Oxford 1966, p. 36

    Google Scholar 

  18. Cottrell, A.H. Symposium on the Relationship between the Structural and Mechanical Properties of Metals, Nat. Phys. Lab HMSO (London) 1963, p. 456

    Google Scholar 

  19. Petch, N.J. Jnl. Iron and Steel Inst. 1953, 174, p.25

    CAS  Google Scholar 

  20. Bowen, P. private communication

    Google Scholar 

  21. Ritchie, R.O., Knott, J.F. and Rice, J.R. Jnl. Mech. Phys. Solids 1973, 21, p.395

    Article  CAS  Google Scholar 

  22. Curry, D.A. and Knott, J.F. Met. Sci. 1979, 13, p.341

    CAS  Google Scholar 

  23. Tweed, J.H. and Knott, J.F. Met. Sci, 1983, 17, p.45

    Google Scholar 

  24. McRobie, D.E. and Knott, J.F. Mat. Sci and Tech. 1985, 1, p.357

    CAS  Google Scholar 

  25. Bowen, P., Ellis, M.B.D., Strangwood, M. and Knott, J.F., Proc. 6th Europ. Conf. on Fracture, Amsterdam 16–20 June 1986 ( EMAS )

    Google Scholar 

  26. McRobie, D.E. “Cleavage Fracture in C/Mn Weld Metals” Ph.D thesis, Cambridge University, May 1985

    Google Scholar 

  27. Vassilaros, M.G. “Fracture Toughness of Ultra-Low Carbon Steel Plate and Heat Affected Zone” CPGS dissertation Cambridge University, March 1986

    Google Scholar 

  28. Bowen, P., Hippsley, C.A. and Knott, J.F. Acta Met, 1984, 32, p. 637

    Article  CAS  Google Scholar 

  29. Bowen, P., Hippsley, C.A. and Knott, J.F. Proc 6th Europ Conf. on Fracture Amsterdam 16–20 June 1986 ( EMAS )

    Google Scholar 

  30. Lewandowski J.J., Hippsley, C. A. and Knotti J.F,, Acta Met, 1986 to be published.

    Google Scholar 

  31. Ellis, M.B.D., Lewandowski, J.J. and Knott, J.F. Proc. 7th Intl. Conf. Strength of Metals and Alloys, Pergamon 1985, p. 1087.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Knott, J.F. (1987). Materials Science of Fracture Processes. In: Latanision, R.M., Jones, R.H. (eds) Chemistry and Physics of Fracture. NATO ASI Series, vol 130. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3665-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3665-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8140-5

  • Online ISBN: 978-94-009-3665-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics