Universal Properties of Bonding at Metal Interfaces

  • John R. Smith
  • John Ferrante
  • Pascal Vinet
  • J. G. Gay
  • Roy Richter
  • James H. Rose
Part of the NATO ASI Series book series (NSSE, volume 130)


Our knowledge of the fundamental properties of surfaces and interfacial bonds has improved considerably over the last decade. While the fracture process is complex, it is dependent in part on these properties. Thus it is of interest to consider current theoretical understanding of metal surfaces and bimetallic interfacial bonds.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith J. R., Gay J. G. and Arlinghaus F. J.: Self-Consistent Local-Orbital Method for Calculating Surface Electronic Structure: Application to Cu(100). Phys. Rev. B 21, 2201 (1980).CrossRefGoogle Scholar
  2. 2.
    Smith JR .(ed): Theory of Chemisorption. Berlin, Heidelberg, New York: Topics in Current Physics, vol. 19: Springer-Verlag, (1980)Google Scholar
  3. 3.
    Arlinghaus F. J., Gay J. G. and Smith, J. R.: Ni(100) Surface Electronic Structure. Phys. Rev. B 21, 2055 (1980). See also Zhu X. Y., Hermanson J., Arlinghaus F. J., Gay J. G., Richter R. and Smith J. R.: Electronic Structure of Ni(100) Films: Self-Consistent Local-Orbital Calculations. Phys. Rev. B 29, 4426 (1984).CrossRefGoogle Scholar
  4. 4.
    Gay J. G., Smith J. R. and Arlinghaus F. J.: Surface Electronic Structure of Rhodium(lOO). Phys. Rev. B 25, 643 (1982).CrossRefGoogle Scholar
  5. 5.
    Arlinghaus F. J., Gay J. G. and Smith J. R.: Surface States on d-Band Metals. Phys. Rev. B 23, 5152 (1981).CrossRefGoogle Scholar
  6. 6.
    Examples from our predictions are: Kevin S. D., S.offel N. G. and Smith N. V.: Surface States on Low-Miller-Index Copper Surfaces. Phys. Rev. B 31,3348 (1985). Heimann P., Hermanson J. and Miosga H.: d-Like Surface-State Bands on Cu(100) and Cu(lll) Observed in Angle-Resolved Photoemission Spectroscopy. Phys. Rev. B 20, 3059 (1979). Kevan S. D. and D. A. Shirley: High-Resolution Angle-Resolved Photoemission Studies of the M-Point Surface State on Cu(001). Phys. Rev. B 22, 542 (1980). Westphal D. and Goldmann A.: Polarization Dependent Photoemission from it d-Like Surface States on Cu. Surf. Sci. 95, L249 (1980). Goldmann A. and Bartels E.: High-Resolution Study of the M Surface State on Ag(100). Surf. Sci. 122, L629 (1982). Koch E. E., Barth J., Fock J.-H., Goldmann A., and Otto A.: Surface Photoemission in the Ad Band from Polycrystalline Silver Surfaces. Solid State Commun. 42, 897 (1982).CrossRefGoogle Scholar
  7. 7.
    Kohn W. and Sham L.: Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
  8. 8.
    Schaefer H.(ed.): The Electronic Structure of Atoms and Molecules. Reading, Mass.; Addison-Wesley, (1972).Google Scholar
  9. 9.
    Gay J. G., Smith J. R., Richter R., Arlinghaus F. J. and Wagoner R. H.: Surface Energies in d-Band Metals. J. Vac. Sci. Technol. A2, 931 (1984).CrossRefGoogle Scholar
  10. 10.
    Wawra H. H.: The Surface Energy of Solid Materials as Measured by Ultrasonic and Conventional Test Methods. Z. Metallkd. 66, 395 (1975).Google Scholar
  11. 11.
    Richter R., Smith J. R. and Gay J. G.: Total Energies and Atom Locations at Solid Surfaces. The Structure of Solid Surfaces, Springer Series in Surface Sciences, vol. 2 ed. by Van Hove M. A. and Tong S. Y., Berlin (1985), pp. 35–40.Google Scholar
  12. 12.
    Zhu X. Y., Hermanson J., Arlinghaus F. J., Gay J. G., Richter R. and Smith J. R.: Electronic Structure and Magnetism of Ni(100) Films: Self-Consistent Local- Orbital Calculations. Phys. Rev. 29, 4426 (1984). This trend of a larger magnetic moment for the surface was also found for 3, 5 and 7 layer Ni(100) films by Gay J. G., Richter R. and Smith J. R. (unpublished).CrossRefGoogle Scholar
  13. 13.
    Richter R., Gay J. G. and Smith J. R.: Spin Separation in a Metal Overlayer. Phys. Rev. Letters 54, 2704 (1985). This was first reported by Richter R., Gay J. G. and Smith J. R.: An Iron Monolayer on Silver(l00): Spin-Polarized Electronic Structure. J. Vac. Sei. Technol. A9, 1498 (1985). A surface magnetic moment larger than that of the bulk was also predicted for Fe(l00) films of 3, 5 and 7 layer thicknesses by Gay J. G., Richter R. and Smith J. R. (unpublished).CrossRefGoogle Scholar
  14. 14.
    See, e. g., Krakauer H., Freeman A. J. and Wimmer E.: Magnetism of the Ni(llO) and Ni(100) Surfaces: Local-Spin-Density Functional Calculations Using the Thin- Slab Linearized Augmented Plane Wave Method. Phys. Rev. B 28, 610 (1983). See also Ohnishi S., Freeman A. J. and Weinert M.: Surface Magnetism of Fe(00l). Phys. Rev. B 28, 6741 (1983).CrossRefGoogle Scholar
  15. 15.
    See, e. g., Bergmann G.: Investigation of Magnetic Films by the Anomalous Hall Effect. J. Magn. Magn. Mater. 55, 68 (1983), and references therein.CrossRefGoogle Scholar
  16. 16.
    Smith G. C., Padmore H. A. and Norris C.: The Growth of Fe Overlayers on Ag(100). Surf. Sei. 119, L287 (1982).CrossRefGoogle Scholar
  17. 17.
    Fu C. L., Freeman A. J. and Oguchi T.: Prediction of Strongly Enhanced Two- Dimensional Ferromagnetic Moments on Metallic Overlayers, Interfaces, and Super- lattices. Phys. Rev. Letters 54, 2700 (1985).CrossRefGoogle Scholar
  18. 18.
    Ferrante J. and Smith J. R.: Theory of the Bimetallic Interface. Phys. Rev. B 31, 3427 (1985).CrossRefGoogle Scholar
  19. 19.
    Smith J. R.: Theory of Electronic Properties of Surfaces. Interactions on Solid Surfaces, Topics in Applied Physics, vol. 4, ed. by Gomer R., New York (1975), pp. 1–39.Google Scholar
  20. 20.
    Smith J. R. and Ferrante J.: Grain-Boundary Energies in Metals from Local- Electron-Density Distributions. Phys. Rev. B 34, 2238 (1986).CrossRefGoogle Scholar
  21. 21.
    Capehart T. W., Richter R., Gay J. G., Smith J. R., Buchholz J. C. and Arling- haus F. J.: Transition Metal Chemisorption on Transition Metals—Theoretical and Experimental Electronic Structure for Silver on Palladium(100).Google Scholar
  22. 22.
    Richter R. and Wilkins J. W.: Self-Consistent Surface Electronic Band Structure Calculations: Changes Upon Chemisorption. J. Vac. Sei. Technol. Al, 1089 (1983).CrossRefGoogle Scholar
  23. 23.
    Feinberg M. J. and Ruedenberg K.: Paradoxical Role of the Kinetic-Energy Oper-ator in the Formation of the Covalent Bond. J. Chem. Phys. 54, 1495 (1971).CrossRefGoogle Scholar
  24. 24.
    Rose J. H., Ferrante J. and Smith J. R.: Universal Binding Energy Curves for Metals and Bimetallic Interfaces. Phys. Rev. Letters 47, 675 (1981).CrossRefGoogle Scholar
  25. 25.
    Ferrante J. and Smith J. R.: Theory of Metallic Adhesion. Phys. Rev. B 19, 3911 (1979).CrossRefGoogle Scholar
  26. 26.
    Smith J. R., Ferrante J. and Rose J. H.: Universal Binding Energy Relation in Chemisorption. Phys. Rev. B 25, 1419 (1982).CrossRefGoogle Scholar
  27. 27.
    Ferrante J., Smith J. R. and Rose J. H.: Diatomic Molecules and Metallic Adhesion, Cohesion and Chemisorption: A Single Binding Energy Relation. Phys. Rev. Letters 50, 1385 (1983).CrossRefGoogle Scholar
  28. 28.
    Rose J. H., Smith J. R. and Ferrante J.: Universal Features of Bonding in Metals. Phys. Rev. B 28, 1835 (1983).CrossRefGoogle Scholar
  29. 29.
    Rose J. H., Vary J. P. and Smith J. R.: Nuclear Equation of State from Scaling Relations for Solids. Phys. Rev. Letters 53, 344 (1984).CrossRefGoogle Scholar
  30. 30.
    For a review, see Smith J. R., Rose J. H., Ferrante J. and Guinea F.: Universal Features of Binding Energy as a Function of Interatomic Spacing. Many-Body Phenomena at Surfaces, edited by Langreth D. and Suhl H., Academic Press (1984), pp. 159–174.Google Scholar
  31. 31.
    Smith J. R. and Ferrante J.: Metals in Intimate Contact. Materials Science Forum 4, 21 (1985).CrossRefGoogle Scholar
  32. 32.
    Rose J. H., Smith J. R., Guinea F. and Ferrante J.: Universal Features of the Equation of State of Metals. Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar
  33. 33.
    Smith J. R., Ferrante J. and Rose J. H.: Universal Binding Energy Relations for Bimetallic Interfaces and Related Systems. Journal de Physique, Colloque C4, sup-plement au no. 4, vol. 46, (1985), p. C4–257.Google Scholar
  34. 34.
    Guinea F., Rose J. H., Smith J. R. and Ferrante J.: Scaling Relations in the Equation of State, Thermal Expansion and Melting of Metals. Appl. Phys. Lett. 44, 53 (1984).CrossRefGoogle Scholar
  35. 35.
    Perdew J. P. and Smith J. R.: Can Desorption Be Described by the Local Density Formalism? Surface Sci. 141, L295 (1984).CrossRefGoogle Scholar
  36. 36.
    Daw M. S., Baskes M. I., Bisson C. L. and Wolfer W. G.: Application of the Embed¬ded Atom Method to Fracture, Dislocation Dynamics and Hydrogen Embrittlement. To be found elsewhere in this proceedings.Google Scholar
  37. 37.
    Wiringa R. B., Smith R. A. and Ainsworth: Realistic Nucleon-Nucleon Potentials with and without Δ (1232) Degrees of Freedom. Phys. Rev. A 29, 1207 (1984).Google Scholar
  38. 38.
    Vinet P., Ferrante J., Smith J. R. and Rose J. H.: A Universal Equation of State for Solids. J. Phys. C: Solid State Phys. 19, L467 (1986). ibid, Phys. Rev. B 15 (to be published).CrossRefGoogle Scholar
  39. 39.
    Murnaghan F. D.: The Compressibility of Media Under Extreme Pressure. Proc. Nat. Acad. Sci. 90, 244–247 (1944).CrossRefGoogle Scholar
  40. 40.
    Vinet P., Smith J. R., Ferrante J. and Rose J. H.: Temperature Effects on the Universal Equation of State of Solids. Phys. Rev. B 15 (to be published).Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1987

Authors and Affiliations

  • John R. Smith
    • 1
  • John Ferrante
    • 2
  • Pascal Vinet
    • 2
  • J. G. Gay
    • 3
  • Roy Richter
    • 3
  • James H. Rose
    • 4
  1. 1.Physics DepartmentGeneral Motors Research LaboratoriesWarrenUSA
  2. 2.National Aeronautics and Space AdministrationLewis Research CenterClevelandUSA
  3. 3.Physics DepartmentGeneral Motors Research LaboratoriesWarrenUSA
  4. 4.Ames Laboratory—U.S. Department of EnergyIowa State UniversityAmesUSA

Personalised recommendations