Skip to main content

Abstract

The concept of translocation of chemical messengers in higher plants was expressed in the Nineteenth Century (e.g., 38) and gained concreteness with Went’s discovery of auxin (Wuchsstoff) (45) which was eventually shown to be indole-3-acetic acid (Fig. 3,1) (12). The polarity of auxin transport in cereal seedlings w&s established by the 1930s and later found to be a widespread feature of shoot and root tissues. Good recent accounts of the historical development of auxin polar transport studies are available (16,19). Polar auxin transport has long been linked, at least in theory, to polar developmental and growth phenomena such as apical dominance and tropisms. It is not a principal task of this Chapter to unravel current controversies and uncertainties in such areas, although scientific interest in polar auxin transport has been sustained and reinforced by the often implicit assumption that auxin concentration is an important physiological and developmental variable. The term ‘hormone’, denoting the concept of a transported chemical messenger, was coined in 1905 and soon applied to plants (40) although the phytohormone concept has rightly been subjected to critical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astle, M.C., Rubery, P.H. (1983) Carriers for abscisic acid and indole–3–acetic acid in primary roots: their regional localisation and thermodynamic driving forces. Planta 157, 53–63.

    Article  CAS  Google Scholar 

  2. Cande W.Z., Ray, P.M. (1976) Nature of cell-to-cell transfer of auxin in polar transport. Planta 129, 43–52.

    Article  CAS  Google Scholar 

  3. Clark, K.A., Goldsmith, M.H.M. (1985) A component of pH-driven IAA accumulation in zucchini membrane vesicles is saturable binding. ( Abstr.) Plant Physiol. ( Suppl. ) 77, 443.

    Google Scholar 

  4. Cohen, J.D., Baldi, B.G., Bialek, K. (1985) Strongly acidic auxin indole-3-methane- sulfonic acid. Synthesis of (14C)indole-3-methanesulfonic acid and studies of its chromatographic, spectral, and biological properties. Plant Physiol. 77, 195–199.

    Article  CAS  PubMed  Google Scholar 

  5. Davies, P.J., Rubery, P.H. (1978) Components of auxin transport in stem segments of Pisum sativum L. Planta 142, 211–219.

    Article  CAS  Google Scholar 

  6. Depta, H., Eisele, K.H., Hertel, R. (1983) Specific inhibition of auxin transport: action on tissue segments and in vitro binding to membranes from maize coleoptiles. Plant Sci. Lett. 31, 181–192.

    Google Scholar 

  7. Depta, H., Rubery, P.H. (1984) A comparative study of carrier participation in the transport of 2,3,5-triodobenzoic acid, indole-3-acetic acid, and 2,4-dichlorophenoxy- acetic acid by Cucurbita pepo L. hypocotyl segments. J. Plant Physiol. 115, 371–387.

    CAS  Google Scholar 

  8. Goldsmith, M.H.M. (1977) The polar transport of auxin. Annu. Rev. Plant Physiol. 28, 439–478.

    Article  CAS  Google Scholar 

  9. Goldsmith, M.H.M. (1982) A saturable site responsible for polar transport of indole-3- acetic acid in sections of maize coleoptiles. Planta 155, 68–75.

    Article  CAS  Google Scholar 

  10. Goldsmith, M.H.M., Goldsmith, T.H. (1981) Quantitative predictions for the chemiosmotic uptake of auxin. Planta 153, 25–33.

    Article  CAS  Google Scholar 

  11. Goldsmith, M.H.M., Goldsmith, T.H., Martin, M.H. (1981) Mathematical analysis of the chemiosmotic polar diffusion of auxin through plant tissues. Proc. Natl. Acad. Sci. USA 78, 976–980.

    Article  CAS  PubMed  Google Scholar 

  12. Haagen-Smit, A.J., Leech, W.D., Bergren, W.R. (1941) Estimation, isolation and identification of auxins in plant material. Science 93, 624–625.

    Article  CAS  PubMed  Google Scholar 

  13. Hasenstein, K-H., Rayle, D. (1984) Cell wall pH and auxin transport velocity. Plant Physiol. 76, 65–67.

    Article  CAS  PubMed  Google Scholar 

  14. Hertel, R., Lomax, T.L., Briggs, W.R. (1983) Auxin transport in membrane vesicles from Cucurbita pepo L. Planta 157, 193–201.

    Article  CAS  Google Scholar 

  15. Hertel, R. (1983) The mechanism of auxin transport as a model for auxin action. Z. Pflanzenphysiol. 112, 53–67.

    CAS  Google Scholar 

  16. Jacobs, M., Gilbert, S.F. (1983) Basal localization of the presumptive auxin transport carrier in pea stem cells. Science 220, 1297–1300.

    Article  CAS  PubMed  Google Scholar 

  17. Jacobs, W.P. (1979) Plant hormones and plant development. 339pp. Cambridge University Press.

    Google Scholar 

  18. Jaffe, L.F., Nuccitelli, R. (1977) Electrical controls of development. Annu. Rev. Biophys. Bioeng. 6, 445–476.

    Google Scholar 

  19. Kaldewey, H. (1984) Transport and other modes of movement of horfnones (mainly auxins). In: Hormonal regulation of development II. The functions of hormones from the level of the cell to the whole plant. Scott, T.K., ed. Encyc. Plant Physiol., New Ser. 10, 80–148.

    Google Scholar 

  20. Kateckar, G.F., Geissler, A.E. (1980) Auxin transport inhibitors IV. Evidence of a common mode of action for a proposed class of auxin transport inhibitors: the phytotropins. Plant Physiol. 66, 1190–1195.

    Article  Google Scholar 

  21. Kutschera, U., Schopfer, P. (1985) Evidence against the acid growth theory of auxin action. Planta 163, 483–493.

    Article  CAS  Google Scholar 

  22. Lobler, M., Klambt, D. (1985) Auxin-binding protein from coleoptile membranes of corn (Zea Mays L.) II Localization of a putative auxin receptor. J. Biol. Chem. 260, 9854– 9859.

    CAS  PubMed  Google Scholar 

  23. Mer, C.L. (1969) Plant growth in relation to endogenous auxin with special reference to cereal seedlings. New Phytol. 68, 275–294.

    Article  Google Scholar 

  24. Milborrow, B.V., Rubery, P.H. (1985) The specificity of the carrier-mediated uptake of ABA by root segments of Phaseolus coccineus L. J. Exp. Bot. 36, 807–822.

    Article  CAS  Google Scholar 

  25. Mitchison, G.J. (1980) The dynamics of auxin transport. Proc. R. Soc. London Ser. B 209, 489–511.

    Article  CAS  Google Scholar 

  26. Mitchison, G.J. (1981) The effect of intracellular geometry on auxin transport. II Geotropism in shoots. Proc. R. Soc. London Ser. B 214, 69–84.

    Article  CAS  Google Scholar 

  27. Morris, D.A., Rubery, P.H. (1985) Effects of translation inhibitors on NPA-sensitive auxin net-uptake and efflux by Cucurbita pepo hypocotyl segments. ( Abstr.) Plant Physiol. ( Suppl.) 77, 18.

    Google Scholar 

  28. Morris, D.A., Thomas, A.G. (1978) A microautoradiographic study of auxin transport in the stem of intact pea seedlings (Pisum sativum L.). J. Exp. Bot. 29, 147–157.

    Article  CAS  Google Scholar 

  29. Nowacki, J., Bandurski, R.S. (1980) Myo-inositol esters of indole-3-acetic acid as seed auxin precursors of Zea mays L. Plant Physiol. 65, 422–427.

    Article  CAS  PubMed  Google Scholar 

  30. Raven, J.A. (1975) Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol. 74, 163–172.

    Article  CAS  Google Scholar 

  31. Raven, J.A., Rubery, P.H. (1982) Coordination of development: hormone receptors, hormone action, and hormone transport. In: Molecular biology of plant development, pp. 28–48, Smith, H., Grierson, D., eds. Blackwell Scientific, Oxford.

    Google Scholar 

  32. Riov, J., Goren, R. (1979) Inhibition of polar indole-3-acetic acid transport by cycloheximide. Plant Physiol. 63, 1217–1219.

    Article  CAS  PubMed  Google Scholar 

  33. Rowntree, R.A., Morris, D.A. (1979) Accumulation of 14C from exogenous labelled auxin in lateral root primordia of intact pea seedlings. Planta 144, 463–466.

    Article  CAS  Google Scholar 

  34. Rubery, P.H. (1978) Hydrogen ion dependence of carrier-mediated auxin uptake by suspension-cultured crown gall cells. Planta 142, 203–206.

    Article  CAS  Google Scholar 

  35. Rubery, P.H. (1979) The effects of 2, 4-dinitrophenol and chemical modifying reagents on auxin transport by suspension–cultured crown gall cells. Planta 144, 173–178.

    CAS  Google Scholar 

  36. Rubery, P.H. (1980) The mechanism of transmembrane auxin transport and its relation to the chemiosmotic hypothesis of the polar transport of auxin. In: Plant growth substances 1979, pp. 50–60, Skoog, F., ed. Springer, Berlin Heidelberg New York.

    Google Scholar 

  37. Rubery, P.H. (1981) Auxin receptors. Annu. Rev. Plant Physiol. 32, 569–596.

    Article  CAS  Google Scholar 

  38. Rubery, P.H. (1984) Auxin binding and membrane receptors in relation to auxin action and transport. In: Membranes and compartmentation in the regulation of plant functions. Annu. Proc. Phytochem. Soc. Eur. 24, 267–282, Boudet, A.M., Alibert, G., Marigo, M., Lea, P.J., eds. Clarendon Press, Oxford.

    Google Scholar 

  39. Rubery, P.H., Sheldrake, A.R. (1973) Effect of pH and cell surface charge on cell uptake of auxin. Nature (London) New Biol. 244, 285–288.

    CAS  Google Scholar 

  40. Rubery, P.H., Sheldrake, A.R. (1974) Carrier-mediated auxin transport. Planta 118,101– 121.

    Article  CAS  Google Scholar 

  41. Sachs, J. (1880) Stoff und Form der Pflanzenorgane I. Arb. Bot. Inst. Wurzburg 2, 452–488.

    Google Scholar 

  42. Sheldrake, A.R. (1979) Effects of osmotic stress on polar auxin transport in Auena mesocotyl sections. Planta 145, 113–117.

    Article  CAS  Google Scholar 

  43. Soding, H. (1923) Werden von der Spitze der Haferkoleoptile Wuchshormone gebildet? Ber. Dtsch. Bot. Ges. 41, 396–400.

    Google Scholar 

  44. Sussman, M.R., Goldsmith, M.H.M. (1981) Auxin uptake and action of N-l-naphthyl- phthalamic acid in corn coleoptiles. Planta 151, 15–25.

    Article  CAS  Google Scholar 

  45. Thomson, K-S., Hertel, R., Muller, S., Tavares, J.E. (1973). N-l-Naphthylphthalamic acid and 2,3,5-triodobenzoic acid: In-vitro binding to particulate cell fractions and action on auxin transport in corn coleoptiles. Planta 109, 337–352.

    Article  CAS  Google Scholar 

  46. Trewavas, A.J. (1982) Growth substance sensitivity: the limiting factor in plant development. Physiol. Plant. 55, 60–72.

    Article  CAS  Google Scholar 

  47. Wangerman, E., Mitchison, G.J. (1981) The dependence of auxin transport on cell length. Plant Cell Environ. 4, 141–144.

    Article  Google Scholar 

  48. Went, F.W. (1928) Wuchsstoff und Wachstum. Ree. Trav. Bot. Neerl. 25, 1–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Rubery, P.H. (1987). Auxin Transport. In: Davies, P.J. (eds) Plant Hormones and their Role in Plant Growth and Development. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3585-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3585-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-247-3498-6

  • Online ISBN: 978-94-009-3585-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics