Skip to main content

Abstract

Gibberellins (GAs) are well known for their spectacular effects in intact plants. They were first discovered in the secretory products of Gibberella fujikuroi, a fungus infecting rice seedlings (for an historical account see 47). Diseased plants grow tall and spindly and tend to fall over under their own weight. In 1926, Kurosawa showed that fungal extracts applied to plants could induce the same symptoms as the pathogen. After, two compounds were crystallized from extracts and given the names Gibberellin A and B. It was not until the 1950s that the first chemical structure of GA was characterized. During that period, a number of laboratories reported that extracts of higher plants could induce similar biological responses as those obtained with fungal GA. This opened the way to intensive analytical research and GAs were eventually detected in various taxa of lower and higher plants. The notion that GAs are in fact genuine plant growth regulators gradually emerged. Chemical identification was pursued vigorously: more than 70 different GAs have been discovered so far. The principal metabolic pathways have also been extensively documented (see chapter B2). Besides its effect on stem elongation GAs affect a number of physiological processes such as fruit and flower formation, dormancy of vegetative organs as well as seed germination (23).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, PA,, Kaufman, P.P., Ikuma, H. (1973) Effects of GA and sucrose on the growth of oat stem segments. Plant Physiol. 51, 1102–1108.

    Article  CAS  PubMed  Google Scholar 

  2. Adams, P.A., Montague, M.J., Tepfer, M., Rayle, D.L., Ikuma, H., Kaufman, P. B. (1975) Effects of gibberellic acid on the plasticity and elasticity of Avena stem segments. Plant Physiol. 56, 757–760.

    Article  CAS  PubMed  Google Scholar 

  3. Adams, P.A. Ross, M.A.- (l983) Interaction of indoleacetic acid and gibberellic acid in short-term growth kinetics of oat stem segments. Plant Physiol. 73, 566–568.

    Article  CAS  PubMed  Google Scholar 

  4. Barnes, L., Jones, R.L. (1984) Regulation of phenylanaline ammonia-lyase activity and growth in lettuce by light and gibberellic acid. Plant Cell and Environm. 4, 89–96.

    Article  Google Scholar 

  5. Bates, G.W., Ray, P.M. (1981) pH dependent interactions between pea cell wall polymers possibly involved in wall deposition and growth. Plant

    Google Scholar 

  6. Byl, T., Terry, M.E.(Ifi8ô) The call wall peroxidase system and plant growth. Plant Physiol. 77, suppl.4.

    Google Scholar 

  7. Cleland, R.E., Rayle, D.L (1978) Auxin, H+ excretion, and cell elongation. Bot. Mag. ( Tokyo ), Spec. Issue, 1, 125–139.

    CAS  Google Scholar 

  8. Cosgrove, D.J., Cleland, R.E. (1983) Osmotic properties of pea internodes in relation to growth and auxin action. Plant Physiol. 72, 332–338.

    Article  CAS  PubMed  Google Scholar 

  9. Dieter, P. ( 1984 ) Calmedulin and calmodilin-mediated processes in plants. Plant Cell Environm. 7, 371–380.

    Article  CAS  Google Scholar 

  10. Elstner, E.F., Heupel A. (1976) Formation of hydrogen peroxide by isolated cell walls front horseradish (Armaracia lapathifalia Gilib.) Flanta, 130, 175–180.

    CAS  Google Scholar 

  11. Evans, M.L. (1974) Rapid responses to plant hormones. Ann. Rev. Plant Physiol. 25; 195–223.

    Article  CAS  Google Scholar 

  12. Fry, S.C. (1979) Phenolic omponents of the primary cell wall and their possible role in the hormonal regulation of growth. Planta 146, 343–352.

    Article  CAS  Google Scholar 

  13. Fry, S.C. (1980) Gibberellin-controlled pectinic acid and protein secretion in growing cells. Phytochemistry 19, 735–740.

    Article  CAS  Google Scholar 

  14. Fry, S.C. (1982) Isodityrosine, a new cross-linking amino acid from plant cell wall glycoprotein. Biochem. J. 204, 449–455.

    CAS  PubMed  Google Scholar 

  15. Fry, S.C. (1983) Feruloylated pectins from the primary cell wall: Their structure arid possible functions. Planta 157, 111–123.

    Article  CAS  Google Scholar 

  16. Garcia-Martinez, J.L. Rappaport, L. (1984) Physiology of gibberellin-induced elongation of epicotyl explants from Vigna sinensis. Plant growth regulation 2, 197–208.

    Article  CAS  Google Scholar 

  17. Caspar, Th., Penel, Ch., Thorpe, T., Greppin, H, 1982 ) Peroxidases 1970–1980: A Survey of their Biochemical and Physiological Roles m Higher Plants. Université de Genève, Centre de Botanique, Genève.

    Google Scholar 

  18. Gaspar, T., Revers, C., Penel, C., Greppin, H. (1983) Auxin control of calcium-mediated peroxidase secretion by auxinrdepen foftt and auxin-independent sugarbset cells. Phytochemistry 22, 2667–2660.

    Article  Google Scholar 

  19. Gross, G. (1977) Cell wall-bound malate dehydrogenase from horseradish. Phytochemistry 16, 319–321.

    Article  CAS  Google Scholar 

  20. Hertel, R. (1983) The mechanism of auxin transport as a model for auxin action. Z. Pflanzenphysiologie 112, 53–67.

    CAS  Google Scholar 

  21. Jacobs, M., Ray, P.M. (1975) Promotion of ryloglucan metabolism acid pH. Plant Physiol. 56, 373–376.

    Article  CAS  PubMed  Google Scholar 

  22. Jacobsen, J.V. (1983) Regulation of protein synthesis in aleurone cells by GA and ABA. In: The Biocheroistryaml Physiology olGibbecellinSw Vol. pp. 159–187, Crozier, A., Ed. Praeger, New York.

    Google Scholar 

  23. Jones, R.L. (1973) Gibberellins: their physiological role. Ann. Rev. Plant Physiol. 24, 251–598.

    Google Scholar 

  24. Jones, R.L. (1980) The physiology o£ gibberellin induced alongation. In: Plant Growth Substances 1979. pp 188–195. Skoog, F., Ed, Springer Verlag, Berlin, Heidelberg, New- York.

    Google Scholar 

  25. Jones, R.L., Moll, C. (1983) Gibberellin-induced growth in excised lettuce hypocotyls. In: The Biochemistry and Physiology of Gibberelliris, pp. 95–128, Crozier, A., Ed. Praeger, New York.

    Google Scholar 

  26. Kamisaka, S. (1973) Requirements of cotyledons for gibberellic acid-induced hypocotyl elongation in lettuce seedlings. Isolation of the cotyledon factor active in enhancing the effect of gibberellic acid. Plant Cell Physiol. 14, 747–755

    CAS  Google Scholar 

  27. Katsu, N., Kamisaka, S. (1983) Quantitative and qualitative changes in cell wall polysaccharides in relation to growth and cell wall loosening in Lactuca sativa hypocotyls. Physiol. Plant. 58, 33–40.

    Article  CAS  Google Scholar 

  28. Katsumi, M., Kazama, H. (1978) Gibberellin control of cell elongation in cucumber hypocotyls. Bot. Mag. ( Tokyo ), Special Issue No. 1, 141–185.

    Google Scholar 

  29. Kaufman, P.B. (1965) The effects of growth substances on intercalary growth and cellular differentiation in developing internodes of Avena sativa. II. The effects of gibberellic acid. Physiol. Plantarum 18, 703–724.

    Google Scholar 

  30. Kaufmann, P.B. (1967) Role of gibberellins in the control of intercalary growth and cellular differentiation in developing A vena internodes. Ann. N.Y. Acad. Sei. 144,191– 203.

    Google Scholar 

  31. Kaufman, P.B., Dayanandan, P. (1983) Gibberellin-induced growth in Avena internodes. In: The Biochemistry and Physiology of Gibberellins, vol 2, pp. 129–157, Crozier, A., Ed. Praeger, New York.

    Google Scholar 

  32. Keith, B., Brown, S., Srivastava, L.M. (1982) In vitro binding of gibberellin A4 to extracts of cucumber measured by using DEAE-cellulose filters. Proc. Natl. Acad. Sci. USA. 79, 1515–1519.

    Google Scholar 

  33. Kende, H. (1983) Some concepts concerning the mode of action of plant hormones. In: Strategies of Plant Reproduction, pp. 147–156, Meudt, W.J., Ed. Allanheld & Osmun, Totowa, New Jersey.

    Google Scholar 

  34. Kende, H., Lang, A. (1963) Gibberellins and light inhibition of stem growth in peas. Plant Physiol. 39, 435–440.

    Article  Google Scholar 

  35. Labavitch, J,M. (1981) Cell wall turnover in plant development. Ann Rev. Plant. Physiol. 32, 385–406.

    Article  CAS  Google Scholar 

  36. Law, D.M., Hamilton, R.H. (1985) Mechanism of GA-enhanced IAA biosynthesis. Plant Physiol. 77, s4.

    Google Scholar 

  37. Lockhart, J.A. (1956) Reversal of light inhibition of pea stem growth by the gibberellins. Proc. Natl. Acad. Sci. USA, 42, 841–848.

    Google Scholar 

  38. Loy, J.B. (1977) Hormonal regulation of cell division in the primary elongating meristems of shoots. In: Mechanisms and Control of Cell Division, pp. 92–110, Rost, T.L., Gifford, E.M., Eds. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  39. Martin, G.C. (1983) Commercial uses of gibberellins In: The Biochemistry and Physiology of Gibberellins, Vol 2, pp. 395–444, Crozier, A., Ed. Praeger, New York.

    Google Scholar 

  40. McNeil, M., Darvill, A.G., Fry, S.C., Albersheim, P. (1984) Structure and function of the primary cell walls of plants. Ann. Rev. Biochem. 53, 625–663.

    Google Scholar 

  41. Metraux, J.-P., Kende, H. (1983) The role of ethylene in the growth response of submerged deed-water rice. Plant Physiol. 72, 441–446.

    Article  CAS  PubMed  Google Scholar 

  42. Metraux, J.P., Kende, H. (1984) The cellular basis of the elongation response in submerged deep-water rice. Planta 160, 73–77.

    Article  Google Scholar 

  43. Moll, C., Jones, R.L. (1981) Short–term kinetics of elongation growth of gibberellin- responsive lettuce hypocoty 1 sections. Planta 152, 442–449.

    Article  CAS  Google Scholar 

  44. Moll, C., Jones, R.L. (1981) Calcium and gibberellin- induced elongation of lettuce hypocotyl sections. Planta 152, 450–456.

    Article  CAS  Google Scholar 

  45. Moll, C., Jones, R.L. (1984) The role of cotyledon factors in gibberellic acid-enhanced elongation of lettuce seedling hypocotyls. Plant Sci. Lett. 34, 283–294.

    Google Scholar 

  46. Musgrave, A., Jackson, E., Ling, E. (1972) Callitriche stem elongation is controlled by ethylene and gibberellin. Nature New Biol. 238, 93–96.

    Article  Google Scholar 

  47. Phinney, B.O. (1983) The history of gibberellins. In: The Biochemistry and Physiology of Gibberellins, vol 1, pp. 19–52, Crozier, A., Ed. Praeger, New York.

    Google Scholar 

  48. Phinney, B.O. (1984) Gibberellin Ax dwarfism and the control of shoot elongation in higher plants. In: The Biosynthesis and Metabolism of Plant Hormones, Soc. Exp. Biol. Seminar No. 23, pp. 17–45, Crozier, A., Hillman, J.R., Eds. Cambridge University Press.

    Google Scholar 

  49. Raskin, I., Kende, H. (1984) The role of gibberellin in the growth response of submerged deep-water rice. Plant Physiol. 76, 947–950.

    Article  CAS  PubMed  Google Scholar 

  50. Richmond, P.A., Mütraux, J.P. (1984) Cellulose synthesis inhibition, cell expansion and pattern of cell wall deposition in Nitella internodes. In: Structure, Function and Biosynthesis of Plant Cell Walls, pp. 475–476, Dugger, W.M., Bartnicki-Garcia S., Eds. Waverly Press, Baltimore.

    Google Scholar 

  51. Rose, R.J. (1974) Differential effect of cycloheximide onthe short-term gibberellin and auxin growth kinetics of gamma coleoptiles. Plant Sci. Lett. 2, 233–237.

    Google Scholar 

  52. Sachs, R.M. (1965) Stem elongation. Ann. Rev. Plant Physiol. 16, 73–96.

    Google Scholar 

  53. Shibata, K., Kubota, T., Kamisaka, S. (1974) Isolation and chemical identification of a lettuce cotyledon factor, a synergist of the gibberellin action in inducing lettuce hypocotyl elongation. Plant Cell Physiol. 15, 191–194.

    CAS  Google Scholar 

  54. Silk, W.K., Jones, R.L. (1975) Gibberellin response in lettuce hypocotyl sections. Plant Physiol. 56, 267–272.

    Article  CAS  PubMed  Google Scholar 

  55. Simpson, G.M., Wain, R.L. (1961) A relationship between gibberellic acid and light in the control of internode extension of dwarf pea (Pisum sativum) J. Exp. Bot. 12, 207–216.

    Google Scholar 

  56. Srivastava, L.M., Sawhney, V.K., Taylor, E.P. (1975) Gibberellic acid induced cell elongation in lettuce hypocotyls. Proc. Natl. Acad. Sci. USA 72: 1107–1 111.

    Google Scholar 

  57. Stoddart, J.L. (1983) Sites of gibberellin biosynthesis and action. In: The Biochemistry and Physiology of Gibberellins, vol 2, pp. 1–54, Crozier, A., Ed. Praeger, New York.

    Google Scholar 

  58. Stuart, D.A., Durnam, D.J., Jones, R.L, (1977) Cell elongation and cell division in elongating lettuce hypocotyl sections. Planta 135, 249–255.

    Article  CAS  Google Scholar 

  59. Stuart, DA., Jones, R.L. (1977) The roles of extensibility and turgor in gibberellin- and dark-stimulated growth. Plant Physiol. 59, 61–68.

    Article  CAS  PubMed  Google Scholar 

  60. Stuart, DA., Jones, R.L. (1978) The role of acidification in gibberellic acid- and fusicoccin-nduced elongation growth of lettuce hypocotyls sections. Planta 142, 135– 145.

    Google Scholar 

  61. Taiz, L., M6traux, J.P., Richmond, P.A. (1981) Control of cell expansion in the Nitella internode. In: Cytomorphogenesis in Plants, pp. 231–259, Kiermayer, O., Ed. Springer, Wien, New-York

    Google Scholar 

  62. Taiz, L. (1984) Plant cell expansion. Ann. Rev. Plant Physiol. 35, 585–657.

    Article  CAS  Google Scholar 

  63. Terry, M.E., Jones, R.L. (1981) Effect of salt on auxin-induced acidification and growth by pea internode sections. Plant Physiol. 68, 59–64.

    Article  CAS  PubMed  Google Scholar 

  64. Terry, M.E. Personnal communication.

    Google Scholar 

  65. Thomas, B., Tull, S.E., Warner, T.J. (1980) Light dependent gibberellin responses in hypocotyls of Lactuca sativa. L. Plant Sci. Lett. 19, 355–362.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Métraux, JP. (1987). Gibberellins and Plant Cell Elongation. In: Davies, P.J. (eds) Plant Hormones and their Role in Plant Growth and Development. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3585-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3585-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-247-3498-6

  • Online ISBN: 978-94-009-3585-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics