Skip to main content

Part of the book series: NATO ASI Series ((ASID,volume 37))

Abstract

The hypothesis that the vestibular system can function as an inertial guidance system for animals’ navigation across terrain is an old but still incompletely established idea (eg., Exner, 1893; for a recent review see Potegal, 1982). In this “dead-reckoning” or “path integration” hypothesis, velocity signals from the semicircular canals and the otolith organs are integrated in the central nervous system to provide the organism with information about its respective angular and linear displacements from some origin. The plausibility of this hypothesis depends upon the demonstration that the nervous system has the capability for such computations. There is, in fact, neurophysiological evidence for at least two integrators operating on vestibular input within the oculomotor control systems. One of these, possibly located within the penabducens nucleus, provides a steady-state, gaze-related input to the eye muscles (Robinson, 1974). A second, “velocity storage” integrator is thought to generate the signal for postrotatory and optokinetic afternystagmus (Raphan, et al, 1979). Recent evidence suggests that input from the otolith organs exerts a strong control over the time constant of this latter integrator (Waespe, et al, 1985), a proposal which is consistent with some behavioral observations made by Cohen and Potegal (see below). While the existence of an integrator specifically subserving vestibular navigation has yet to be demonstrated, circumstantial evidence suggests that the basal ganglia may be involved in such computations (Abraham, et al, 1983). In any event, the nervous system clearly has this general computational capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, L., Potegal, M., Miller, S., 1983. Evidence for caudate nucleus involvement in an egocentric spatial task: Return from passive transport. Physiological Psychology, 11 11–17.

    Google Scholar 

  • Barlow, J.S., 1968. Inertial navigation as a basis for animal navigation. Journal of Theoretical Biology, 6,76–117.

    Article  Google Scholar 

  • Beritoff, J.S., 1965. Neural mechanisms of higher vertebrates. Trans. W. Liberson. Boston: Little Brown and Co.

    Google Scholar 

  • Chapuis, N., 1982. Referentiels spatiaux utilises dans la realisation d’un trajet inverse chez le chien. L’Année Psychologique 82, 75–100.

    Article  Google Scholar 

  • Curthoys, I.S., Blanks, R.H.J., and Markham C.H., 1977. Semicircular canal functional anatomy in cat, guinea pig and man. Acta Otolaryngology, 83 258–265.

    Article  Google Scholar 

  • Etienne, A.S., 1980. The orientation of the golden hamster to its nest site after the elimination of various sensory cues. Experiential 36 1048–1050.

    Article  Google Scholar 

  • Etienne, A.S., Teroni, E., Maurer, R., Portenier, V. and Saucy, F., 1985. Short distance homing in a small mammal; the role of exteroceptive cues and path integration. Experientia, 41, 122–125.

    Article  Google Scholar 

  • Exner, S., 1893. Negative Versuchsergibnesse uber das Orientierungsvermugen der Breiftauben. Sitzung-Berichte der Akademie der Wissenschaften in Wein, 102, 318–331.

    Google Scholar 

  • Jensen, D.W. and Thompson, G.C., 1983. Vestibular nerve input to neck and shoulder regions of lateral cuneate nucleus. Brain Research 280, 335–338.

    Article  PubMed  Google Scholar 

  • Liedgren, S.R.C., Rubin, A.M., Aschan, G., Odkvist, L.M and Larsby, B., 1978, Influence of neck afferents on activity in the cat vestibular nuclei. In J.D. Hood (Ed) Vestibular mechanisms in health and disease. Academic Press:N.Y.

    Google Scholar 

  • Lukaszewska, I., 1963. Sensory cues in the return reaction. Acta Biologica Experimentalis, 23, 249–256.

    Google Scholar 

  • Miller, S., Barnett, B. and Potegal, M., 1978. Cues for path-finding with passive movement exposure to the path. Eastern Psychological Association, Washington D.C.

    Google Scholar 

  • Miller, S., Potegal, M., and Abraham, L., 1981. Vestibular involvement in spatial orientation. Society for Neuroscience Abstracts, 7, 484.

    Google Scholar 

  • Miller, S., Potegal, M., and Abraham, L., 1983. Vestibular involvement in a passive transport and return task. Physiological Psychology, 11, 1–10.

    Google Scholar 

  • Mittlesteadt, M.-L., and Mittlesteadt, H., 1980. Homing by path integration. Naturwissenshaften, 67, 566.

    Article  Google Scholar 

  • Piaget, J., 1937. La construction du réel chez l’enfant. Neuchatel.Delachaux et Niestle.

    Google Scholar 

  • Potegal, M., 1982. Vestibular and neostriatal contributions to spatial orientation. In M. Potegal (Ed) Spatial Abilities: Development and Physiological Foundations. Academic Press:N.Y.

    Google Scholar 

  • Raphan, T., Matsuo, V. and Cohen, B., 1979. Velocity storage in the vestibular ocular reflex are (VOR). Experiemental Brain Research 35, 229–248.

    Google Scholar 

  • Robinson, D.L, 1974. The effect of cerebellectomy on the cat’s vestibulo-ocular integration. Brain Research 71, 195–207.

    Article  PubMed  Google Scholar 

  • Waespe, W., Cohen, B. and Raphan, T., 1985. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science 228 199–202.

    Article  PubMed  Google Scholar 

  • Wiltschko, W. and Wiltschko, R., 1978. Evidence for the use of magnetic outward-journey information in homing pigeons Naturwissenshaften, 65, 112–113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Potegal, M. (1987). The Vestibular Navigation Hypothesis: A Progress Report. In: Ellen, P., Thinus-Blanc, C. (eds) Cognitive Processes and Spatial Orientation in Animal and Man. NATO ASI Series, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3533-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3533-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8079-8

  • Online ISBN: 978-94-009-3533-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics