Skip to main content

Abstract

The theory of acoustoelasticity and several recently developed theories of acoustoplasticity are reviewed in this article. For a body with plastic deformation, the acoustoelastic birefringence is affected by the initial stress and the texture, and the latter is related to plastic strains and inherent anisotropy of the body. The birefringence formula may be applied to measure residual stresses by ultrasonic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson, R.W. and Raelson, V.J.. “Acoustoelasticity”, Product Engineering, 30, 1959, pp. 56–59.

    Google Scholar 

  2. Crecraft, D.I., “The Measurement of Applied and Residual Stresses in Metals Using Ultrasonic Waves”, J. Sound Vib., 5, 1967, pp. 173–192.

    Article  ADS  Google Scholar 

  3. Eringen, A.C. and Suhubi, E.S., Elastodynamics, Vol. 1, (Chapter 4), Academic Press, New York, 1974.

    MATH  Google Scholar 

  4. Fukuoka, H., An article in this volume, 1986.

    Google Scholar 

  5. Hart, E.W., “Constitutive Relations for the Nonelastic Deformation of Metals”, J. Eng Materials and Technology, (Trans. ASME), 98, 1976, pp. 193–202.

    Article  Google Scholar 

  6. Hirao, M. and Pao, Y.H., “Dependence of Acoustoelastic Birefringence on Plastic Strains in a Beam,” J. Acoust. Soc. Am., 77, 1985, pp. 1659–1664.

    Article  ADS  Google Scholar 

  7. Johnson, G.C., “Acoustoelastic Theory for Elastic-Plastic Materials”, J. Acoust. Soc. Am., 70, 1981, pp. 591–595.

    Article  ADS  MATH  Google Scholar 

  8. Johnson, G.C., “The Effect of Plastic Deformation on the Acoustoelastic Response of Metals”, J. Appl Mech., 50, 1983, pp. 689–691.

    Article  Google Scholar 

  9. Johnson, G.C., “Acoustoelastic Response of a Polycrystalline Aggregate with Orthotropic Texture,” in Wave Propagation in Inhomogeneous Media and Ultrasonic NDE, G.C. Johnson (Ed.), AMD, Vol 62, ASME, New York, 1984, pp. 175–184.

    Google Scholar 

  10. Kobayashi, M., “Analysis of Acoustic Phenomena in Elasto-Plastically Deformed Condition”, (in Japanese) Transactions of Japan Soc. Mech. Engr., A48, No. 432, 1982, pp. 1072–1981.

    Article  Google Scholar 

  11. Pao, Y.H. and Gamer, U., “Acoustoelastic Waves in Orthotropic Media”, J. Acoust. Soc. Am., 77, 1985, pp. 806–812.

    Article  ADS  MATH  Google Scholar 

  12. Pao, Y.H. and Gamer, U., “Theory of Acoustoelasticity for Elastic-Plastic Solids”, Materials Science Center Report No. 5121, 1983, Cornell University, Ithaca, New York (Revised in 1985).

    Google Scholar 

  13. Pao, Y.H., Sachse, W. and Fukuoka, H., “Acoustoelasticity and Ultrasonic Measurements of Residual Stresses”, in Physical Acoustics, Vol. 17, W.P. Mason and R.N. Thurston (Eds.), Academic Press, New York, 1984, pp. 62–143.

    Google Scholar 

  14. Sayers, C.M., An article in this volume. 1986.

    Google Scholar 

  15. Thurston, R.N. and Brugger, K., “Third-Order Elastic Constants and the Velocity of Small Amplitude Elastic Waves in Homogeneously Stressed Media”, Phys. Rev., 133, 1964, pp. A1604–1610.

    Article  ADS  Google Scholar 

  16. Tokuoka, T. and Iwashimizu, Y., “Acoustical Birefringence of Ultrasonic Waves in Deformed Isotropic Elastic Materials,” Int. J. Solids and Structures, 4, 1968, pp. 383–389.

    Article  Google Scholar 

  17. Tokuoka, T. and Saito, M., “Elastic Wave Propagations and Acoustical Birefringence in Stressed Crystals”, J. Acoust. Soc. Am., 45, 1969, pp. 1241–1246.

    Article  ADS  Google Scholar 

  18. Toupin, R.A. and Bernstein, B., “Sound Waves in Deformed Perfectly Elastic Materials. Acoustoelastic Effect”, J. Acoust. Soc. Am., 33, 1961, pp. 216–225.

    Article  MathSciNet  ADS  Google Scholar 

  19. Hogar, A., “On the Determination of Residual Stress in an Elastic Body”, to appear in J. Elasticity.

    Google Scholar 

  20. Man, C.S. and Lu, W.Y., “Towards an Acoustoelastic Theory for Measurement of Residual Stress”, to appear J. Elasticity.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this paper

Cite this paper

Pao, YH. (1987). Theory of Acoustoelasticity and Acoustoplasticity. In: Achenbach, J.D., Rajapakse, Y. (eds) Solid mechanics research for quantitative non-destructive evaluation. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3523-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3523-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8074-3

  • Online ISBN: 978-94-009-3523-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics