Skip to main content

Uranium in Selected Endorheic Basins as Partial Analogue for Spent Fuel Behavior in Salt

  • Chapter
  • 105 Accesses

Part of the book series: Radioactive Waste Management Series ((RADW))

Summary

If uranium (U) behavior with respect to the components of certain endorheic (closed) basin subsurface, playa, or terminal lake brines were quantitatively understood, the ability to predict the long-term redistribution of emplaced U among analogous components of salt formations may be enhanced. Tests that determine the nature of U interactions with pure mineral and organic matter surfaces are important, but studying the natural systems available could give indications of long-term stabilities of processes, and of preferential processes. For example, some metals present in trace quantities, such as U, may be coprecipitated in the oxidized zone with an evaporite mineral that may afterward undergo diagenesis, especially if conditions become more reducing. During diagenesis, the trace metal may be remobilized, but scavenged by sulfides or organic particulates, leaving the evaporite mineral depleted of its trace metal content. A survey of the literature shows some trace metal behavior in closed basins has been studied. However, information on U consists of only a few abundance determinations for some evaporite systems. Obtaining and interpreting natural analogue data for the U and Th decay series in selected endorheic basin environments is suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. COME, B. and CHAPMAN, N. (Eds.). (1986). Natural Analogue Working Group, first meeting, Brussels, November 5–7, 1985, final meeting report. Report EUR 10315 EN-FR, Commission of the European Communities Brussels.

    Google Scholar 

  2. COME, B. and CHAPMAN, N. (Eds.). 1987. Natural Analogue Working Group, second meeting, Interlaken (CH), June 17–19, 1986, final meeting report. Report EUR 10671 EN-FR, Commission of the European Communities, Brussels.

    Google Scholar 

  3. GLASBERGEN, P. (1986). Special needs of modelers working in the field of geological disposal in rock-salt. Pages 86–89 in: Come, B. and Chapman, N. (Eds.). (1986). Natural Analogue Working Group, first meeting, Brussels, November 5–7, 1985, final meeting report. Report EUR 10315 EN-FR, Commission of the European Communities, Brussels.

    Google Scholar 

  4. U. S. DEPARTMENT OF ENERGY (1986). Nuclear Waste Policy Act (Section 112) Environmental assessment, Deaf Smith County site, Texas. DOE/RW-0069. Volume 1 Chapter 3: The site. Office of Civilian Radioactive Waste Management, Washington, D.C.

    Google Scholar 

  5. U. S. DEPARTMENT OF ENERGY (1986). Nuclear Waste Policy Act (Section 112) Environmental assessment, Deaf Smith County site, Texas. DOE/RW-0069. Volume 2, Chapter 6: Suitability of the Deaf Smith County site for site characterization and for development as a repository. Office of Civilian Radioactive Waste Management, Washington, D.C.

    Google Scholar 

  6. INTERA TECHNOLOGIES, INC. (1985). Preliminary analyses of scenarios for potential human interference for repositories in three salt formations. BMI/ONWI-553. Prepared for Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio.

    Book  Google Scholar 

  7. WASTE ISOLATION SYSTEMS PANEL, THOMAS H. PIGFORD, Chairman (1983). A study of the isolation system for geologic disposal of radioactive wastes. National Research Council, National Academy of Sciences. Published by National Academy Press, Washington, D.C.

    Google Scholar 

  8. WOLLENBERG, H. A., BROOKINS, D. G., COHEN, L. H., FLEXSER, S., ABASHIAN, M., MURPHY, M. and WILLIAMS, A. E. (1984). Uranium, thorium and trace elements in geologic occurrences as analogues of nuclear waste repository conditions. Section 5.4, pages 464–491 in: Alexander, D. H. and Birchard, G. F. (Eds.). NRC nuclear waste geochemistry ’83. NUREG/CP-0052. Proceedings of a conference held at Reston, Virginia, August 30–31, 1983. Published by the U.S. Nuclear Regulatory Commission, Washington, D.C.

    Google Scholar 

  9. SIMPSON, H. J., TRIER, R. M., LI, Y. H. and ANDERSON, R. F. (1984). Field experiment determinations of distribution coefficients of actinide elements in alkaline lake environments. Section 4.2, pages 326–342 in: Alexander, D. H. and Birchard, G. F. (Eds.). NRC nuclear waste geochemistry’83. NUREG/CP-0052. Proceedings of a conference held at Reston, Virginia, August 30–31, 1983. Published by the U.S. Nuclear Regulatory Commission, Washington, D.C.

    Google Scholar 

  10. BIRCHARD, G. F. and ALEXANDER, D. H. (1983). Natural analogues -- a way to increase confidence in prediction of long-term performance of radioactive waste disposal. In: Scientific basis for nuclear waste management VI, Mat. Res. Soc. Symp. Proceedings 15: 323–329.

    Google Scholar 

  11. SONNENFELD, P. (1984). Brines and evaporites. Published by Academic Press, Inc., Orlando, Florida.

    Google Scholar 

  12. LANGMUIR, D. (1978). Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta 42:547–569.

    Article  CAS  Google Scholar 

  13. CHRISTENSEN, H. and BJERGBAKKE, E. (1982). Radiolysis of groundwater from HLW stored in copper canisters. KBS TR 82–02. Svensk Karnbrans-leforsorjning AB/Avdelning KBS, Stockholm.

    Google Scholar 

  14. NERETNIEKS, I. and ASLUND, B. (1983). The movement of radionuclides past a redox front. KBS TR 83–66. Svensk Karnbransleforsorjning AB/Avdelning KBS, Stockholm.

    Google Scholar 

  15. HOLSER, W. T. (1979). Mineralogy of evaporites. Chapter 8, pages 211–294 in: R. G. Burns (Ed.). Marine minerals. Mineralogical Society of America, Washington, D.C.

    Google Scholar 

  16. BRENNER-TOURTELOT, E. F., VINE, J. D. and BOHANNON, R. G. (1977). Lithium in the playa environment. Pages 169–182 in: Greer, D. C. (Ed.). Desertic terminal lakes. Proceedings from the International Conference, Weber State College, Ogden, Utah, May 2–5, 1977. Published by Utah Water Research Laboratory, Utah State University, Logan, Utah.

    Google Scholar 

  17. GREER, D. C. (1977). Desertic terminal lakes. Pages 1–24 in: Greer, D. C. (Ed.). Desertic terminal lakes. Proceedings from the International Conference, Weber State College, Ogden, Utah, May 2–5, 1977. Published by Utah Water Research Laboratory, Utah State University, Logan, Utah.

    Google Scholar 

  18. HOLSER, W. T. (1979). Trace elements and isotopes in evaporites. Chapter 9, pages 295–346 in: Bums, R. G. (Ed.). Marine minerals. Mineralogical Society of America, Washington, D.C.

    Google Scholar 

  19. TAYLER, P. L., HUTCHINSON, L. A. and MUIR, M. K. (1977), Heavy metals in the Great Salt Lake, Utah. Pages 109–124 in: Greer, D. C. (Ed.). Desertic terminal lakes. Proceedings from the International Conference, Weber State College, Ogden, Utah, May 2–5, 1977. Published by Utah Water Research Laboratory, Utah State University, Logan, Utah.

    Google Scholar 

  20. VAN LUIK, A. E. and JURINAK, J. J. (1978). A chemical model of heavy metals in the Great Salt Lake. Research report 34. Utah Agricultural Experiment Station, Utah State University, Logan, Utah.

    Google Scholar 

  21. THURBER, D. (1965). The concentrations of some natural radioelements in the waters of the Great Basin. Bull. Volcanol. 28, 195–201.

    Article  CAS  Google Scholar 

  22. BELL, K. G. (1956), Uranium in precipitates and evaporites. U.S. Geological Survey Professional Paper 300:381–386.

    Google Scholar 

  23. MAYNARD, J. B. (1983). Geochemistry of sedimentary ore deposits. Published by Springer-Verlag, New York.

    Google Scholar 

  24. HAMBLETON-JONES, B. B. and TOENS, P.D. (1978). The geology and geochemistry of calcrete/gypcrete uranium deposits in duricrust: Namib Desert, South West Africa (Abstract). Economic Geology 37:1407–1408.

    Google Scholar 

  25. MANN, A. W. and DEUTSCHER, R. L. (1978). Genesis principles for the precipitation of carnotite in calcrete drainages in Western Australia. Economic Geology 73:1724–1737.

    Article  CAS  Google Scholar 

  26. BRIOT, P. (1982). Formation of some uraniferous ores. Miner. Deposita 17:151–157. Title/abstract in English translation in Chem. Abstr. 96:202782z.

    Article  CAS  Google Scholar 

  27. BRIOT, P. (1983). Hydrogeochemical environment of uraniferous calcrete from Yeelirrie (Western Australia). Miner. Deposita 18:191–206. Title/abstract in English translation in Chem. Abstr. 99:161675h.

    Article  CAS  Google Scholar 

  28. RAWSON, R. A. (1980). Uranium in Todilto limestone (Jurassic) of New Mexico - example of a sabkha-like deposit. Pages 304–312 in: Rautman, C A. (Ed.). Geology and mineral technology of the Grants uranium region 1979. Memoir 38, New Mexico Bureau of Mines & Mineral Resources, Socorro, New Mexico.

    Google Scholar 

  29. LAUL, J. C, SMITH, M. R. and HUBBARD, N. (1985). Behavior of natural uranium, thorium, and radium isotopes in the Wolfcamp brine aquifers, Palo Duro Basin, Texas. In: Scientific basis for nuclear waste management VIII, Mat. Res. Soc. Symp. Proceedings 44: 475–482.

    Google Scholar 

  30. DUFFY, C. J. and OGARD, A. E. (1982). Uraninite immobilization and nuclear waste. LA-9199-MS. Los Alamos National Laboratory, Los Alamos, New Mexico.

    Book  Google Scholar 

  31. OSMOND, J. K. (1980). Uranium disequilibrium in hydrogeologic studies. Chapter 7, pages 259–282 in: Fritz, P. and Pontes, J. Ch. (Eds.). Handbook of environmental isotope geochemistry, volume 1, the terrestrial environment, A. Published by Elsevier Scientific Publishing Co., Amsterdam.

    Google Scholar 

  32. Smith, M. J. et al. (1980). Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge, RH0-BWI-ST-7, Rockwell Hanford Operations, Richland, Washington.

    Google Scholar 

  33. BOWIE, S. H. U. and PLANT, J. A. (1983). Natural radioactivity in the environment. Chapter 16, pages 481–494 in: Thornton, I. (Ed.). Applied environmental geochemistry. Academic Press Geology Series. Published by Academic Press, London.

    Google Scholar 

  34. MULLER, A. B. and DUDA, L. E. (1985). The uranium-water system: behavior of dominant aqueous and solid components. SAND83–0105, Sand1a National Laboratories, Albuquerque, New Mexico.

    Google Scholar 

  35. COLLINS, G. A. (1975). Geochemistry of oilfield waters. (Developments in petroleum science, 1), Published by Elsevier Scientific Publishing Company, Amsterdam.

    Google Scholar 

  36. RICHARDS, F. A. (1965). Anoxic basins and fjords. Volume 1, Chapter 13 in: Riley, J. P. and Skirrow, G. (Eds.). Chemical oceanography. Published by Academic Press, London.

    Google Scholar 

  37. GOLDBERG, E. D. (1965). Minor elements in sea water. Volume 1, Chapter 5 in: Riley, J. P. and Skirrow, G. (Eds.). Chemical oceanography. Published by Academic Press, London.

    Google Scholar 

  38. ROBBINS, E. I. (1983). Accumulation of fossil fuels and metallic minerals in active and ancient rift lakes. Tectonophysics 94:633–658.

    Article  CAS  Google Scholar 

  39. KELEPERTSIS, A. E. (1981). The geochemistry of uranium and thorium in some lower carboniferous sedimentary rocks (Great Britain). Chemical Geology 34:275–288.

    Article  CAS  Google Scholar 

  40. BOROVEC, Z., KRIBEC, B. and TOLAR, V. (1979). Sorption of uranyl by humic acids. Chemical Geology 27:39–46.

    Article  CAS  Google Scholar 

  41. BOROVEC, Z. (1981). The adsorption of uranyl species by fine clay. Chemical Geology 32:45–48.

    Article  CAS  Google Scholar 

  42. CLARKE, F. W. (1924). The composition of the river and lake waters of the United States. United States Geological Survey, Professional Paper 135. U.S. Department of the Interior, Washington, D.C.

    Google Scholar 

  43. MORSE, J. W., SHANBAG, P. M., SAITO, A. and CHOPIN, G. R. (1984). Interaction of uranyl ions in carbonate media. Chemical Geology 42:85–99.

    Article  CAS  Google Scholar 

  44. BUTTS, D, S. (1977). Solar evaporation chemistry of Great Salt Lake brines. Pages 125–129 in: Greer, D, C (Ed.). Desertic terminal lakes. Proceedings from the International Conference, Weber State College, Ogden, Utah, May 2–5, 1977. Published by Utah Water Research Laboratory, Utah State University, Logan, Utah.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Van Luik, A.E. (1987). Uranium in Selected Endorheic Basins as Partial Analogue for Spent Fuel Behavior in Salt. In: Côme, B., Chapman, N.A. (eds) Natural Analogues in Radioactive Waste Disposal. Radioactive Waste Management Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3465-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3465-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8051-4

  • Online ISBN: 978-94-009-3465-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics