Skip to main content

Detection of Nephrotoxicity of Foreign Chemicals with the Use of In Vitro and In Vivo Techniques

  • Chapter
Nephrotoxicity in the experimental and clinical situation

Part of the book series: Developments in Nephrology ((DINE,volume 19-20))

Abstract

The kidney is of paramount importance in the excretion of many potentially toxic drugs and chemicals. Investigations into the possible renal toxicity of such agents helps identify those substances that may be hazardous to health, and also provides information about normal renal function. This chapter will examine the methods used to evaluate chemical-induced nephrotoxicity, in normal experimental animals (and in some cases where some degree of renal failure has been experimentally produced); study the properties and mechanisms involved in organic anion and organic cation transport; and compare the sensitivity of various function tests in assessing nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cross, RJ and Taggart, JV, Renal tubular transport: accumulation of p-aminohippurate by rat kidney slices, Am J Physiol, 161, 181, 1950.

    PubMed  CAS  Google Scholar 

  2. Biber, TUL, Mylle, M, Baines, AD, Gottschalk, GW, Oliver, JR and MacDowell, MC, A study by micropuncture and microdissection of acute renal damage in rats, Am J Med, 44, 664, 1968.

    PubMed  CAS  Google Scholar 

  3. Hirsch, GH, Differential effects of nephrotoxic agents on renal organic ion transport and metabolism, J Pharmacol Exp Ther, 186, 593, 1973.

    PubMed  CAS  Google Scholar 

  4. Kacew, S and Hirsch, GH, Evaluation of nephrotoxicity of various compounds by means of in vitro techniques and comparison to in vivo methods, in Toxicology of the Kidney, Hook, JB, Ed, Raven Press, New York, 1981, 77.

    Google Scholar 

  5. Hirsch, GH, Differential effects of nephrotoxic agents on renal transport and metabolism by use of in vitro techniques, Environ Health Perspect, 15, 89, 1976.

    PubMed  CAS  Google Scholar 

  6. Hirsch, GH and Pakuts, AP, Renal cortical slice uptake and runout of N- methyInicotinamide and p-aminohippurate after potassium dichromate treatment, Can J Physiol Pharmacol, 52, 465, 1974.

    PubMed  CAS  Google Scholar 

  7. Hirsch, GH and Pakuts, AP, Enhancement of renal organic base accumulation by potassium dichromate, Toxicol Appl Pharmacol, 32, 109, 1975.

    PubMed  CAS  Google Scholar 

  8. Baines, AD, Cell renewal following dichromate induced renal tubular necrosis: an enzyme histochemical study, Am J Pathol, 47, 851, 1965.

    PubMed  CAS  Google Scholar 

  9. Flamenbaum, W, McNeil, JS, Kotchen, TA and Saladino, AJ, Experimental acute renal failure induced by uranyl nitrate in the dog, Circ Res, 31, 682, 1972.

    PubMed  CAS  Google Scholar 

  10. Hirsch, GH, Stimulation of organic base transport by uranyl nitrate, Can J Physiol Pharmacol, 50, 533, 1972.

    PubMed  CAS  Google Scholar 

  11. Nomiyama, K and Foulkes, EC, Some effects of uranyl acetate on proximal tubular function in rabbit kidney, Toxicol Appl Pharmacol, 13, 89, 1968.

    CAS  Google Scholar 

  12. Blantz, RC, The mechanism of acute renal failure after uranyl nitrate, J Clin Invest, 55, 621, 1975.

    PubMed  CAS  Google Scholar 

  13. Aschinberg, LC, Goldsmith, DL, Olbing, H, Hardy, M, Spitzer, A, Edelmann, CM Jr, and Blaufox, MD, Neonatal changes in renal blood flow distribution in puppies, Am J Physiol, 228, 1453, 1975.

    PubMed  CAS  Google Scholar 

  14. Horster, M and Larsson, L, Mechanisms of fluid absorption during proximal tubule development, Kidney Int, 10, 348, 1976.

    PubMed  CAS  Google Scholar 

  15. Pelayo, JC, Andrews, PM, Coffey, AK, Calcagno, PL, Eisner, GM and Jose, PA, The influence of age on acute renal toxicity of uranyl nitrate in the dog, Pediat Res, 17, 985, 1983.

    PubMed  CAS  Google Scholar 

  16. Cafruny, EJ, The site and mechanism of action of mercurial diuretics, Pharmacol Rev, 20, 89, 1968.

    PubMed  CAS  Google Scholar 

  17. Hook, JB and Hirsch, GH, Effect of organic mercurial compounds on renal organic ion transport, in Mercury, Mercurials and Mercaptans, Mills, MW and Clarkson, TW, Eds, Charles C Thomas, Springfield, Illinois, 1972, 124.

    Google Scholar 

  18. Ross, CR and Farah, A, p-Aminohippurate and N-methylnicotinamide transport in dog renal slices - an evaluation of the counter-transport hypothesis, J Pharmacol Exp Ther, 151, 159, 1966.

    PubMed  CAS  Google Scholar 

  19. Hirsch, GH, Inhibition of renal organic ion transport by methyl mercury, Environ Physiol, 1, 51, 1971.

    CAS  Google Scholar 

  20. Falk, SA, Klein, R, Haseman, JK, Sanders, GM, Talley, FA, and Lim, DJ, Acute methyl mercury intoxication and ototoxicity in guinea pigs, Arch Pathol, 97, 297, 1974.

    PubMed  CAS  Google Scholar 

  21. Chang, LW and Sprecher, JA, Degenerative changes in the neonatal kidney following in utero exposure to methylmercury, Environ Res, 11, 392, 1976.

    PubMed  CAS  Google Scholar 

  22. Ware, RA, Burkholder, PM and Chang, LW, Ultrastructural changes in renal proximal tubules after chronic organic and inorganic mercury intoxication, Environ Res, 10, 121, 1975.

    PubMed  CAS  Google Scholar 

  23. Stroo, WE and Hook, JB, Renal functional correlates of methyl mercury intoxication: interaction with acute chloride toxicity, Toxicol Appl Pharmacol, 42, 399, 1977.

    PubMed  CAS  Google Scholar 

  24. Singhai, RL, Kacew, S and Sutherland, DJB, Metabolic alterations in liver and kidney following chronic methyl mercury treatment and withdrawal, Environ Res, 7, 220, 1974.

    Google Scholar 

  25. Chang, LW, Ware, RA and Desnoyers, PA, A histochemical study on some enzyme changes in the kidney, liver and brain after chronic mercury intoxication in the rat, Food Cosmet Toxicol, 11, 283, 1973.

    PubMed  CAS  Google Scholar 

  26. Verschuuren, HG, Kroes, R, Den Tonkelaar, EM, Berkvens, JM, Helleman, PW, Rauws AG, Schuller PL and Van Esch GJ, Toxicity of methyl mercury chloride in rats. I Short-term study, Toxicology, 6, 85, 1976.

    PubMed  CAS  Google Scholar 

  27. Fowler, BA, Ultrastructural evidence for nephropathy induced by long term exposure to small amounts of methyl mercury, Science, 175, 780, 1972.

    PubMed  CAS  Google Scholar 

  28. McDowell, EM, Nagle, RB, Zalme, RC, McNeil, JS, Flamenbaum, W and Trump, BF, Studies on the pathophysiology of acute renal failure. I Correlation of ultrastructure and function in the proximal tubule of the rat following administration of mercuric chloride, Virchows Arch (Cell Pathol), 22, 173, 1976.

    CAS  Google Scholar 

  29. Ganote, CE, Reimer, KA and Jennings, RB, Acute mercuric chloride nephrotoxicity. An electron microscopic and metabolic study, Lab Invest, 31, 633, 1974.

    PubMed  CAS  Google Scholar 

  30. Phillips, R, Yamauchi, M, Cote, MG and Plaa, GL, Assessment of mercuric chloride-induced nephrotoxicity by p-aminohippuric acid and the activity of four gluconeogenic enzymes in rat renal cortex, Toxicol Appl Pharmacol, 41, 407, 1977.

    PubMed  CAS  Google Scholar 

  31. Ellis, BG, Price, RG and Topham, JC, The effect of tubular damage by mercuric chloride on kidney function and some urinary enzymes in the dog, Chem Biol Interact, 7, 101, 1973.

    PubMed  CAS  Google Scholar 

  32. Daston, GP, Kavlock, RJ, Rogers, EH and Carver, B, Toxicity of mercuric chloride to the developing rat kidney. I Postnatal ontogeny of renal sensitivity, Toxicol Appl Pharmacol, 71, 35, 1984.

    Google Scholar 

  33. Daston, GP, Gray, JA, Carver, B and Kavlock, RJ, Toxicity of mercuric chloride to the developing rat kidney. II Effect of increased dosages on renal function in suckling pups, Toxicol Appl Pharmacol, 74, 35, 1984.

    PubMed  CAS  Google Scholar 

  34. Dobyan, DC and Bulger, RE, Partial protection by chlorpromazine in mercuric chloride-induced acute renal failure in rats, Lab Invest, 50, 578. 1984.

    PubMed  CAS  Google Scholar 

  35. Klonne, DR and Johnson, DR, Amelioration of mercuric chloride-induced acute renal failure by dithiothreitol, Toxicol Appl Pharmacol, 70, 459, 1983.

    PubMed  CAS  Google Scholar 

  36. Fukino, H, Hirai, M, Hsueh, YM and Yamane, Y, Effect of zinc pre-treatment on mercuric chloride-induced lipid peroxidation in the rat kidney, Toxicol Appl Pharmacol, 73, 395, 1984.

    PubMed  CAS  Google Scholar 

  37. Richardson, RJ and Murphy, SD, Effect of glutathione depletion on tissue deposition of methylmercury in rats, Toxicol Appl Pharmacol, 31, 505, 1975.

    PubMed  CAS  Google Scholar 

  38. Johnson D R, Role of renal cortical sulfhydryl groups in development of mercury-induced renal toxicity, J Toxicol Environ Health, 9, 119, 1982.

    PubMed  CAS  Google Scholar 

  39. Wold, JS, Joost, RR and Owen, NV, Nephrotoxicity of cephaloridine in newborn rabbits: role of the renal anionic transport system, J Pharmacol Exp Ther, 201, 778, 1977.

    PubMed  CAS  Google Scholar 

  40. Bidani, A, Churchill, PC, Fleishmann, L and Mecker-McKenna, B, HgCl2-induced acute renal failure in the developing rat, Pediat Res, 14, 183, 1979.

    Google Scholar 

  41. Morgan, JM, Hartley, MW and Miller, RE, Nephropathy in chronic lead poisoning, Arch Intern Med, 118, 17, 1966.

    PubMed  CAS  Google Scholar 

  42. Van Esch, GH, Van Genderen, H and Vink, HH, The induction of renal tumors by feeding of basic lead acetate to rats, Br J Cancer, 16, 289, 1962.

    PubMed  Google Scholar 

  43. Goyer, RA, Leonard, DL, Moore, JF, Rhyne, B and Krigman, MR, Lead dosage and the role of the intranuclear inclusion body, Arch Environ Health, 20, 705, 1970.

    PubMed  CAS  Google Scholar 

  44. Hirsch, GH, Effect of chronic lead treatment on renal function, Toxicol Appl Pharmacol, 25, 84, 1973.

    PubMed  CAS  Google Scholar 

  45. Goyer, RA, Lead in the kidney, Curr Top Pathol, 55, 147, 1971.

    PubMed  CAS  Google Scholar 

  46. Chisolm, JJ, Aminoaciduria as a manifestation of renal tubular injury in lead intoxication and a comparison with patterns of aminoaciduria seen in other diseases, J Pediatr, 60, 1, 1962.

    PubMed  Google Scholar 

  47. Zook, BC, Lead intoxication in urban dogs, Clin Toxicol, 6, 377, 1973.

    PubMed  CAS  Google Scholar 

  48. Carson, TL, Van Gelder, GA, Buck, WB, Hoffman, LJ, Mick, DL and Long, KR, Effects of low level lead ingestion in sheep, Clin Toxicol, 6, 389, 1973.

    PubMed  CAS  Google Scholar 

  49. Cornell, RP and Filkins, JP, Depression of hepatic gluconeogenesis by acute lead administration, Proc Soc Exp Biol Med, 147, 371, 1974.

    PubMed  CAS  Google Scholar 

  50. Rippe, DF and Berry, LJ, Metabolic manifestations of lead acetate sensitization to endotoxin in mice, J Reticuloendothel Soc, 13, 527, 1973.

    PubMed  CAS  Google Scholar 

  51. Stevenson, A, Merali, Z, Kacew, S and Singhai, RL, Effects of subacute and chronic lead treatment on glucose homeostasis and renal cyclic AMP metabolism in rats, Toxicology, 6, 265, 1976.

    PubMed  CAS  Google Scholar 

  52. Nechay, BR, Nelson, JA, Contreras, RR, Sarles, HE, Remmers, AR Jr, Beathard, GA Jr, Fish, JC, Lindley, JD, Brady, JM and Lerman, MJ, Ouabain-sensitive adenosine triphosphatase from human kidneys, J Pharmacol Exp Ther, 192, 303, 1975.

    CAS  Google Scholar 

  53. Nechay, BR and Saunders, JP, Inhibitory characteristics of lead chloride in sodium- and potassium-dependent adenosine triphosphatase preparations derived from kidney, brain and heart of several species, J Toxicol Environ Health, 4, 147, 1978.

    PubMed  CAS  Google Scholar 

  54. Singhal, RL, Kacew, S, Sutherland, DJB and Telli, AH, Plumbism: adaptive changes in hepatic and renal metabolism, Res Commun Chem Pathol Pharmacol, 6, 951, 1973.

    PubMed  CAS  Google Scholar 

  55. Chisolm, JJ, Barrett, MB and Harrison, HV, Indicators of internal dose of lead in relation to derangement in heme synthesis, Johns Hopkins Med J, 137, 6, 1975.

    PubMed  Google Scholar 

  56. Choie, DD and Richter, GW, Cell proliferation in mouse kidney induced by lead. I. Synthesis of deoxyribonucleic acid, Lab Invest, 30, 647, 1974.

    PubMed  CAS  Google Scholar 

  57. Choie, DA and Richter, GW, Cell proliferation in mouse kidney induced by lead. II. Synthesis of ribonucleic acid and protein, Lab Invest, 30, 652, 1974.

    PubMed  CAS  Google Scholar 

  58. Cihak, A arid Seifertova, M, Stimulated DNA synthesis in livers and kidneys induced to proliferate associated with unchanged thymidine and thymidylate kinase activities, Chem Biol Interact, 13, 141, 1976.

    PubMed  CAS  Google Scholar 

  59. Stevenson, AJ, Kacew, S and Singhai, RL, Reappraisal of the use of a single dose of lead for the study of cell proliferation in kidney, liver and lung, J Toxicol Environ Health, 2, 1125, 1977.

    PubMed  CAS  Google Scholar 

  60. Stevenson, AJ, Kacew, S and Singhal, RL, Influence of lead on hepatic renal and pulmonary nucleic acid, polyamine, and cyclic adenosine 31:51 monophosphate metabolism in neonatal rats, Toxicol Appl Pharmacol, 40. 161, 1977.

    PubMed  CAS  Google Scholar 

  61. Friberg, L, Piscator, M and Nordberg, G, Cadmium in the Environment, CRC Press, Cleveland, 1971.

    Google Scholar 

  62. Gieske, TH and Foulkes, EC, Acute effects of cadmium on proximal tubular function in rabbits, Toxicol Appl Pharmacol, 27, 292, 1974.

    PubMed  CAS  Google Scholar 

  63. Vander, AJ, Effects of zinc, cadmium and mercury on renal transport systems, Am J Physiol, 204, 781, 1963.

    PubMed  CAS  Google Scholar 

  64. Nomiyama, K, Sato, C and Yamamoto, A, Early signs of cadmium intoxication in rabbits, Toxicol Appl Pharmacol, 24, 625, 1973.

    PubMed  CAS  Google Scholar 

  65. Nomiyama, K, Sugata, Y, Yamamoto, A and Nomiyama, H, Effects of dietary cadmium on rabbits. I Early signs of cadmium intoxication, Toxicol Appl Pharmacol, 31, 4, 1975.

    PubMed  CAS  Google Scholar 

  66. Merali, Z, Kacew, S and Singhal, RL, Response of hepatic carbohydrate and cyclic AMP metabolism to cadmium treatment in rats, Can J Physiol Pharmacol, 53, 174, 1975.

    PubMed  CAS  Google Scholar 

  67. Sutou, S, Yamamoto, K, Sendota, H, Tomomatsu, K, Shimizu, Y and Sugiyama, M, Toxicity, fertility, teratogenicity and dominant lethal tests in rats administered cadmium subchronically. I Toxicity studies, Ecotoxicol Environ Safety, 4, 39, 1980.

    PubMed  CAS  Google Scholar 

  68. Nogawa, K, Kobayashi, E and Honda, R, A study of the relationship between cadmium concentrations in urine and renal effects of cadmium, Environ Health Perspect, 28, 161, 1979.

    PubMed  CAS  Google Scholar 

  69. Nomiyama, K, Nomiyama, H and Yotoriyama, M, Ageing, a factor aggravating chronic toxicity of cadmium, Toxicol Lett, 6, 225, 1973.

    Google Scholar 

  70. Whanger, PD, Effects of dietary nickel on enzyme activities and mineral contents in rats, Toxicol Appl Pharmacol, 25, 323, 1973.

    PubMed  CAS  Google Scholar 

  71. Waalkes, MP, Kasprzak, KS, Ohshima, M and Poirier, LA, Protective effects of zinc acetate toward the toxicity of nickelous acetate in rats, Toxicology, 34, 29, 1985.

    PubMed  CAS  Google Scholar 

  72. Clary, JJ, Nickel chloride-induced metabolic changes in the rat and guinea pig, Toxicol Appl Pharmacol, 31, 55, 1975.

    PubMed  CAS  Google Scholar 

  73. Gitlitz, PH, Sunderman, FW Jr and Goldblatt, PJ, Aminoaciduria and proteinuria in rats after a single intraperitoneal* injection of Ni (II), Toxicol Appl Pharmacol, 34, 430, 1975.

    PubMed  CAS  Google Scholar 

  74. Webb, M, Protection by zinc against cadmium toxicity, Biochem Pharmacol, 21, 2767, 1972.

    PubMed  CAS  Google Scholar 

  75. Ward, JM and Fauvie, KA, The nephrotoxic effects of cis-dichlorodiammine- platinum (II) (NSC-119875) in male F-344 rats, Toxicol Appl Pharmacol, 38, 535, 1976.

    PubMed  CAS  Google Scholar 

  76. Dobyan, DC, Levi, J, Jacobs, C, Kosek, J and Weiner, M, Mechanism of cis- platinum nephrotoxicity. II Morphologic observations, J Pharmacol Exp Ther, 213, 551, 1980.

    PubMed  CAS  Google Scholar 

  77. Goldstein, RS, Noordewier, B, Bond, JT, Hook, JB and Mayor, GH. Cis- dichlorodiammine platinium nephrotoxicity: Time course and dose response of renal function impairment, Toxicol Appl Pharmacol, 60, 163, 1981.

    PubMed  CAS  Google Scholar 

  78. Cojocel, C, Smith, JH, Maita, K, Sleight, SD and Hook, JB, Renal protein degradation: A biochemical target of specific nephrotoxicants, Fund Appl Toxicol, 3, 278, 1983.

    CAS  Google Scholar 

  79. Kawamura, J, Soeda, A and Yoshida, O, Nephrotoxicity of cis-diamminedichloroplatinum (II) (cis-platinum) and the additive effect of antibiotics: morphological and functional observation in rats, Toxicol Appl Pharmacol, 58, 475, 1981.

    PubMed  CAS  Google Scholar 

  80. Goldstein, RS, Mayor, GH, Gingerich, RL, Hook, JB, Robinson, B and Bond, JT, Hyperglucagonemia following cisplatin treatment, Toxicol Appl Pharmacol, 68, 250, 1983.

    PubMed  CAS  Google Scholar 

  81. Cohen, AI, Harberg, J and Citrin, DL, Measurement of urinary β2-microglobulin in the detection of cisplatin nephrotoxicity, Cancer Treat Rep, 65, 1083, 1981.

    PubMed  CAS  Google Scholar 

  82. Schilsky, RL and Anderson, T, Hypomagnesemia and renal magnesium wasting in patients receiving cisplatin, Ann Intern Med, 90, 929, 1979.

    PubMed  CAS  Google Scholar 

  83. Schilsky, RL, Renal and metabolic toxicities of cancer chemotherapy, Seminar Oncol, 9, 75, 1982.

    CAS  Google Scholar 

  84. Thomsen, K and Olesen, OV, Lithium-induced acute renal failure in the rat, Toxicol Appl Pharmacol, 45, 155, 1978.

    PubMed  CAS  Google Scholar 

  85. Hestbech, J, Hansen, HE, Amidsen, A and Olesen, S, Chronic renal lesions following long-term treatment with lithium, Kidney Int, 12, 205, 1977.

    PubMed  CAS  Google Scholar 

  86. Evan, AP and Ollerich, DA, The effects of lithium carbonate on the structure of rat kidney, Am J Anat, 134, 97, 1972.

    PubMed  CAS  Google Scholar 

  87. Schou, M, Lithium studies. I Toxicity, Acta Pharmacol Toxicol, 15, 70, 1958.

    CAS  Google Scholar 

  88. Jacobsen, NO, Olesen, 0V, Thomsen, K, Ottosen, PD and Olsen, S, Early changes in renal distal convoluted tubules and collecting ducts of lithium-treated rats: light microscopy, enzyme histochemistry and H-thymidine autoradiography, Lab Invest, 46, 298, 1982.

    PubMed  CAS  Google Scholar 

  89. Kling, MA, Fox, JG, Johnston, SM, Tolkoff-Rubin, NE, Rubin, RH and Colvin, R B, Effects of long-term lithium administration on renal structure and function in rats: a distinctive tubular lesion, Lab Invest, 50, 526, 1984.

    PubMed  CAS  Google Scholar 

  90. Jenner, FA, Lithium and the question of kidney damage, Arch Gen Psychiatry, 36, 888, 1979.

    PubMed  CAS  Google Scholar 

  91. Wilfert, JN, Burke, JP, Bloomer, HA and Smith, CB, Renal insufficiency associated with gentamicin therapy, J Infect Dis (Suppl), 124, S148, 1971.

    Google Scholar 

  92. Bobrow, SN, Jaffe, E and Young, RC, Anuria and acute tubular necrosis associated with gentamicin and cephalothin, J Am Med Assoc, 222, 1546, 1972.

    CAS  Google Scholar 

  93. Bennett, WM, Aminoglycoside nephrotoxicity, Nephron, 35, 73, 1983.

    PubMed  CAS  Google Scholar 

  94. Wersall, J, Lundquist, PG and Bjorkroth, B, Ototoxicity of gentamicin, J Infect Dis, 119, 410, 1969.

    PubMed  CAS  Google Scholar 

  95. Jao, RL and Jackson, GG, Gentamicin sulfate, a new antibiotic against gram- negative bacilli, J Am Med Assoc, 189, 817, 1964.

    CAS  Google Scholar 

  96. Gingell, JC and Waterworth, PM, Dose of gentamicin in patients with normal renal function and renal impairment, Br Med J, 2, 19, 1968.

    PubMed  CAS  Google Scholar 

  97. Schentag, JJ, Specificity of renal tubular damage criteria for aminoglycoside nephrotoxicity in critically ill patients, J Clin Pharmacol, 23, 473, 1983.

    PubMed  CAS  Google Scholar 

  98. Schentag, JJ and Plaut, ME, Patterns of urinary β2-microglobulin excretion by patients treated with aminoglycoside, Kidney Int, 17, 654, 1980.

    PubMed  CAS  Google Scholar 

  99. Hirsch, GH, Enhancement of gentamicin nephrotoxicity by glycerol, Toxicol Appl Pharmacol, 29, 270, 1974.

    PubMed  CAS  Google Scholar 

  100. Forrey, AW, Meijsen-Ludwick, BT, O’Neill, MA, Maxwell, BM, Blair, AD and Cutler, RE, Nephrotoxicity: a comparison in humans of gentamicin and gentamicin C1 administration, Toxicol Appl Pharmacol, 44, 453, 1978.

    PubMed  CAS  Google Scholar 

  101. Williams, PD, Holohan, PD and Ross, CR, Gentamicin nephrotoxicity. I Acute biochemical correlates in rats, Toxicol Appl Pharmacol, 61, 234, 1981.

    PubMed  CAS  Google Scholar 

  102. Kluwe, WM and Hook, JB, Functional nephrotoxicity of gentamicin in the rat, Toxicol Appl Pharmacol, 45, 163, 1978.

    PubMed  CAS  Google Scholar 

  103. Cohen, L, Lapkin, R and Kaloyanides, GJ, Effect of gentamicin on renal function in the rat, J Pharmacol Exp Ther, 193, 264, 1975.

    PubMed  CAS  Google Scholar 

  104. Williams, PD, Holohan, PD and Ross, CR, Gentamicin nephrotoxicity. II Plasma membrane changes, Toxicol Appl Pharmacol, 61, 243, 1981.

    PubMed  CAS  Google Scholar 

  105. Viano, I, Eandi, M and Santiano, M, Toxic effects of some antibiotics on rabbit kidney cells, Int J Tissue React, 2, 181, 1983.

    Google Scholar 

  106. Finter, NB, Dye uptake methods of assessing viral cytopathogenicity and their application to interferon assay, J Gen Virol, 5, 419, 1969.

    CAS  Google Scholar 

  107. Barr, GA, Mazze, RI, Cousins, MJ and Kosek, JC, An animal model for combined methoxyflurane and gentamicin nephrotoxicity, Br J Anaesth, 45, 306, 1973.

    PubMed  CAS  Google Scholar 

  108. Brinker, KR, Bulger, RE, Dobyan, DC, Stacey, TR, Southern, PM, Henrich, WL and Cronin, RE, Effect of potassium depletion on gentamicin nephrotoxicity, J Lab Clin Med, 98, 292, 1981.

    PubMed  CAS  Google Scholar 

  109. Humes, HD, Sastrasinh, M and Weinberg, JM, Calcium is a competitive inhibitor of gentamicin-renal membrane binding interactions and dietary calcium supplementation protects against gentamicin nephrotoxicity, J Clin Invest, 73, 134, 1984.

    PubMed  CAS  Google Scholar 

  110. Teixeira, RB, Kelley, J, Alpert, H, Pardo, V and Vaamonde, CA, Complete protection from gentamicin-induced acute renal failure in the diabetes mellitus rat, Kidney Int, 21, 600, 1982.

    PubMed  CAS  Google Scholar 

  111. Bennett, WM, Parker, RA, Elliott, WC, Gilbert, DN and Houghton, OC, Sex- related differences in the susceptibility of rats to gentamicin nephrotoxicity, J Inject Dis, 145, 370, 1982.

    CAS  Google Scholar 

  112. Bennett, WM, Parker, RA and Porter, GA, Alterations in organic ion transport induced by gentamicin nephrotoxicity in the rat, J Lab Clin Med, 95, 32, 1980.

    PubMed  CAS  Google Scholar 

  113. Kosek, JC, Mazze, RI and Cousins, MJ, Nephrotoxicity of gentamicin, Lab Invest, 30, 48, 1974.

    PubMed  CAS  Google Scholar 

  114. Silverblatt, FJ and Kuehn, C, Autoradiography of gentamicin uptake by the rat proximal tubule cell, Kidney Int, 15, 335, 1979.

    PubMed  CAS  Google Scholar 

  115. Powell, JH and Reidenberg, MM, In vitro response of rat and human kidney lysosomes to aminoglycosides, Biochem Pharmacol, 31, 3447, 1982.

    PubMed  CAS  Google Scholar 

  116. Feldman, S, Wang, MY and Kaloyanides, GJ, Aminoglycosides induce a phos- pholipidosis in the renal cortex of the rat: an early manifestation of nephrotoxicity, J Pharmacol Exp Ther, 220, 514, 1982.

    PubMed  CAS  Google Scholar 

  117. Wilmotte, E, Maldague, P, Tulkens, P, Baumgartner, R, Schmook, F, Walzl, H and Obenaus, H, S86451, a new derivative of gentamicin with reduced nephrotoxicity: biochemical, morphological and functional studies, Drugs Exp Clin Res, 9, 467, 1983.

    CAS  Google Scholar 

  118. Kacew, S and Reasor, MJ, Newborn responses to amphiphilic drugs, Fed Proc, 44, 2323, 1985.

    PubMed  CAS  Google Scholar 

  119. Cojocel, C, Dociu, N, Ceacmacudis, E and Baumann, K, Nephrotoxic effects of aminoglycoside treatment on renal protein reabsorption and accumulation, Nephron, 37, 113, 1984.

    PubMed  CAS  Google Scholar 

  120. Hostetier, KY and Hall, LB, Aminoglycoside antibiotics inhibit lysosomal phospholipase A and C from rat liver in vitro, Biochim Biophys Acta, 710, 506, 1982.

    Google Scholar 

  121. Kaloyanides, GJ, Aminoglycoside-induced functional and biochemical defects in the renal cortex, Fund Appl Toxicol, 4, 930, 1984.

    CAS  Google Scholar 

  122. Laurent, G, Carlier, MB, Rollman, B, Van Hoof, F, and Tulkens, P, Mechanism of aminoglycoside-induced lysosomal phospholipidosis: in vitro and in vivo studies with gentamicin and amikacin, Biochem Pharmacol, 31, 3861, 1982.

    PubMed  CAS  Google Scholar 

  123. DeBroe, ME, Paulus, GJ, Verpooten, GA, Roels, F, Buyssens, N, Wedeen, R, Van Hoof, F and Tulkens, PM, Early effects of gentamicin, tobramycin and amikacin on the human kidney, Kidney Int, 25, 643, 1984.

    CAS  Google Scholar 

  124. Lipsky, JJ and Leitman, PS, Aminoglycoside inhibition of a renal phos- phatidylinositol phospholipase C, J Pharmacol Exp Ther, 220, 287, 1982.

    PubMed  CAS  Google Scholar 

  125. Kornguth, M and Runin, CM, Distribution of gentamicin and amikacin in rabbit tissues, Antimicrob Agents Chemother, 11, 974, 1977.

    PubMed  CAS  Google Scholar 

  126. Kacew, S, Gentamicin or chlorphentermine induction of phospholipidosis in the developing organism: role of tissue and species in manifestation of toxicity, J Pharmacol Exp Ther, 232, 239, 1985.

    PubMed  CAS  Google Scholar 

  127. Sagawa, N, Bleasdale, JE and DiRenzo, GC, The effects of polyamines and aminoglycosides on phosphatidylinositol-specific phospholipase C from human amnion, Biochim Biophys Acta, 752, 153, 1983.

    PubMed  CAS  Google Scholar 

  128. Rajchgot, P, Prober, CG, Soldin, S, Perlman, M, Good, F, Harding, E, Klein, J and MacLeod, S, Aminoglycoside-related nephrotoxicity in the premature newborn, Clin Pharmacol Ther, 35, 394, 1984.

    PubMed  CAS  Google Scholar 

  129. McMartin, DN and Engel, SG, Effect of ageing on gentamicin nephrotoxicity and pharmacokinetics in rats, Res Commun Chem Pathol Pharmacol, 38, 193, 1982.

    PubMed  CAS  Google Scholar 

  130. Cronin, RE, Aminoglycoside nephrotoxicity: pathogenesis and prevention, Clin Nephrol, 11, 251, 1979.

    PubMed  CAS  Google Scholar 

  131. Lane, AZ, Wright, GE and Blair, DC, Ototoxicity and nephrotoxicity of amikacin, Am J Med, 62, 911, 1977.

    PubMed  CAS  Google Scholar 

  132. Tessin, I, Bergmark, J, Hiesche, K, Jagenburg, R and Trollfors, B, Renal function of neonates during gentamicin treatment, Arch Dis Child, 57, 758,1982.

    PubMed  CAS  Google Scholar 

  133. Wick, WE, Preston, DA, White, WA and Gordee, RS, Compound 64716 a new synthetic antibacterial agent, Antimicrob Agents Chemother, 4, 415, 1973.

    PubMed  CAS  Google Scholar 

  134. Gemba, M, Komamura, T, Matsushima, Y, Itoh, T, Miyata, K and Nakamura, M, Effect of cinoxacin on cellular metabolism and p-aminohippurate transport in kidney cortical slices in terms of its nephrotoxic action, Toxicol Lett, 15, 49, 1983.

    PubMed  CAS  Google Scholar 

  135. Gemba, M, Komamura, T, Matsushima, Y, Itoh, T, Miyata, K and Nakamura, M, Cinoxacin: competitive inhibitory effect on p-aminohippurate transport and its uptake in renal cortical slices, Arch Int Pharmacodyn Therap, 261, 308,1983.

    CAS  Google Scholar 

  136. Atkinson, RM, Currie, JP, Davis, B, Pratt, PAH, Sharpe, HM and Tomich, EG, Acute toxicity of cephaloridine, an antibiotic derived from cephalosporin, Toxicol Appi Pharmacol, 8, 398, 1966.

    CAS  Google Scholar 

  137. Wold, JS, Turnipseed, SA and Miller, BL, The effect of renal cation transport inhibition on cephaloridine nephrotoxicity, Toxicol Appi Pharmacol, 47, 115, 1979.

    CAS  Google Scholar 

  138. Wold, JS, Cephalosporin nephrotoxicity, in Toxicology of the Kidney, Hook, JB, Ed, Raven Press, New York, 1981, 251.

    Google Scholar 

  139. Slighter, RG, Montenaro, MJ, Fabian, RJ, Bhandari, JC, Donikian, MR and Drobeck, HP, Comparative nephrotoxicity of hydroxygentamicin and other aminoglycosides in rats, Fund Appi Toxicol, 4, 558, 1984.

    CAS  Google Scholar 

  140. Fleming, PC and Jaffe, D, The nephrotoxic effect of cephaloridine, Postgrad Med J, 43, Suppl, 89, 1967.

    PubMed  Google Scholar 

  141. Chow, AYK, Hirsch, GH and Buttar, HS, Nephrotoxic and hepatoxic effects of tricloran and Chlorhexidine in rats, Toxicol Appi Pharmacol, 42, 1, 1977.

    CAS  Google Scholar 

  142. Inamori, Y, Kato, Y, Kubo, M, Nakanishi, J, Nakashima, M and Gemba, M, The effect of racemomyycin-D, a nephrotoxic antibiotic, on cellular metabolism of rat kidney cortex in vitro, Jap J Pharmacol, 35, 397, 1984.

    PubMed  CAS  Google Scholar 

  143. Hruban, Z, Pulmonary and generalized lysosomal storage induced by am-phophilic drugs, Environ Health Perspect, 55, 53, 1984.

    PubMed  CAS  Google Scholar 

  144. Hostetier, KY, Molecular studies of the induction of cellular phos- pholipidosis by cationic amphiphilic drugs, Fed Proc, 43, 2582, 1984.

    Google Scholar 

  145. Lullmann-Rauch, R and Nassberger, L, Citalopram-induced generalized lipidosis by cationic amphiphilic drugs, Acta Pharmacol Toxicol, 52, 161, 1983.

    CAS  Google Scholar 

  146. Shikata, T, Kanetaka, Y, Endo, Y and Nagashima, K, Drug-induced generalized phospholipidosis, Acta Pathol Jap, 22, 517, 1972.

    CAS  Google Scholar 

  147. Read, WK and Bay, WW, Basic cellular lesion in chloroquine toxicity, Lab Invest, 24, 246, 1971.

    PubMed  CAS  Google Scholar 

  148. Hruban, Z, Slesers, A and Hopkins, E, Drug-induced and naturally occurring myeloid bodies, Lab Invest, 27, 62, 1972.

    PubMed  CAS  Google Scholar 

  149. Lullmann-Rauch, R, Lipidosis-like renal changes in rat treated with chlor- phentermine or with tricyclic antidepressants, Virchows Arch B Cell Pathol, 18, 15, 1975.

    Google Scholar 

  150. Lullmann-Rauch, R and Stoermer, B, Generalized lipidosis in newborn rats and guinea pigs induced during prenatal development by administration of amphiphilic drugs to pregnant animals, Virchows Arch Cell Pathol, 39, 59, 1982.

    CAS  Google Scholar 

  151. Thelmo, WL and Levine, S, Renal lesions induced by tilorone and an analog, Am J Pathol, 91, 355, 1978.

    PubMed  CAS  Google Scholar 

  152. Kacew, S and Narbaitz, R, The effect of phenobarbital on chlorphentermine induced lipidosis-like alterations in renal tissue of adult and newborn rats, Virchows Arch Cell Pathol, 36, 59, 1981.

    CAS  Google Scholar 

  153. Reasor, MJ, Kacew, S and Thoma-Laurie, DL, Effects of cationic amphiphilic drugs on the developing animal, in Toxicology and the Newborn, Kacew, S and Reasor, MJ, Eds, Elsevier, The Netherlands, 1984, 69.

    Google Scholar 

  154. Sgaragli, GP, Corte, LD and Gremigni, D, Chlorimipramine-induced phospholipidosis: biochemical and pharmacokinetic observations in the rat, Pharmacol Res Commun, 15, 231, 1983.

    PubMed  CAS  Google Scholar 

  155. Lullmann, H, Rossen, E and Seiler, KU, The pharmacokinetics of phentermine and chlorphentermine in chronically treated rats, J Pharm Pharmacol, 25, 239, 1973.

    PubMed  CAS  Google Scholar 

  156. Lullmann, H, Lullmann-Rauch, R and Mosinger, EU, Impairment of renal function in rats with generalized lipidosis as induced by chlorphentermine, Arzneim Forsch, 31, 795, 1981.

    CAS  Google Scholar 

  157. Christensen, EI, Maunsbach, AB and Lullmann-Rauch, R, Renal lysosomal protein digestion in experimental lipidosis, Virchows Arch Cell Pathol, 43, 309, 1983.

    CAS  Google Scholar 

  158. Hostetler, KY and Richman, DD, Studies on the mechanism of phospho lipid storage induced by amantidine and chloroquine in Madin Darby canine kidney cells, Biochem Pharmacol, 31, 3795, 1982.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers

About this chapter

Cite this chapter

Kacew, S. (1987). Detection of Nephrotoxicity of Foreign Chemicals with the Use of In Vitro and In Vivo Techniques. In: Bach, P.H., Lock, E.A. (eds) Nephrotoxicity in the experimental and clinical situation. Developments in Nephrology, vol 19-20. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3371-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3371-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8014-9

  • Online ISBN: 978-94-009-3371-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics