Skip to main content

Part of the book series: Developments in Nephrology ((DINE,volume 19-20))

Abstract

The kidneys have a clearly defined role as excretory organs for xenobiotics and their polar metabolites. Less well understood is the involvement of the kidneys in the metabolism of xenobiotics, a function usually ascribed to the liver. The primary function of xenobiotic metabolism is to convert non-polar compounds to polar products that will not be reabsorbed from urine or bile. Although xenobiotic metabolism has been considered as a detoxification process, in certain instances, the products of metabolism may be potent toxicants. Recent investigations have shown significant catalytic activities of enzymes involved in xenobiotic metabolism in the kidney. Intrarenal xenobiotic metabolism may be a prerequisite for nephrotoxicity induced by some chemicals. Since an understanding of xenobiotic metabolizing enzymes is important in evaluating the biochemical mechanisms of nephrotoxicity, this chapter will focus on identification, localization, and activity of several renal enzymes involved in xenobiotic metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kluwe, W.M. and Hook, J.B., Effects of environmental chemicals on kidney metabolism and function, Kidney Int., 18, 648, 1980.

    PubMed  CAS  Google Scholar 

  2. Rush, G.F., Smith, J.H., Newton, J.F. and Hook, J.B., Chemically induced nephrotoxicity: role of metabolic activation, CRC Crit. Rev. Toxicol., 13, 99, 1984.

    CAS  Google Scholar 

  3. Ellin, A., Jakobsson, S.W., Schenkman, J.B., and Orrenius, S., Cytochrome P- 450 of rat kidney cortex microsomes: its involvement in fatty acid w-and (w-1) hydroxylation, Arch. Biochem. Biophys., 150, 64, 1972.

    CAS  Google Scholar 

  4. Okita, R.T., Yasukochi, Y., Masters, B.S.S., Theoharides, A.D. and Kupfer, D., Prostaglandin w- and (w-l)-hydroxylation by pig kidney cortex cytochrome P-450, Prog. Lipid Res., 20, 283, 1981.

    CAS  Google Scholar 

  5. Goldberg, J.P. and Anderson, R.J., Renal metabolism and excretion of drugs, in The Kidney: Physiology and Pathophysiology, Seldin, D.W. and Giebisch, G., Eds., Raven Press, New York, 1985, 2097.

    Google Scholar 

  6. Anders, M.W., Metabolism of drugs by the kidney, Kidney Int., 18, 636, 1980.

    PubMed  CAS  Google Scholar 

  7. Connelly, J.C. and Bridges, J.W., The distribution and role of cytochrome P- 450 in extrahepatic organs, in Reviews in Biochemical Toxicology, Vol. 1, Bridges, J.W. and Chasseaud, L.F., Eds., John Wiley and Sons, New York, 1980, 1.

    Google Scholar 

  8. Jones, D.P., Orrenius, S. and Jakobsson, S.W., Cytochrome P-450-linked monooxygenase systems in the kidney, in Extrahepatic Metabolism of Drugs and other Foreign Compounds, Gram, T.E., Ed., Spectrum Publications, New York, 123, 1980.

    Google Scholar 

  9. Bachur, N.R., Gordon, S.L., Gee, M.V. and Kon, H., NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals., Proc. Natl. Acad. Sei., 76, 954, 1979.

    CAS  Google Scholar 

  10. Berlin, V. and Haseltine, W.A., Reduction of adriamycin to a semiquinone- free radical by NADPH cytochrome P-450 reductase produces DNA cleavage in a reaction mediated by molecular oxygen., J. Biol. Chem., 256, 4747, 1981.

    PubMed  CAS  Google Scholar 

  11. Kappus, H. and Sies, H., Toxic drug effects associated with oxygen metabolism: Redox cycling and lipid peroxidation, Experientia, 37, 1233, 1981.

    PubMed  CAS  Google Scholar 

  12. Kluwe, W.M., McCormack, K.M. and Hook, J.B., Selective modification of the renal and hepatic toxicities of chloroform by induction of drug metabolizing enzyme systems in kidney and liver, J. Pharmacol. Exp. Ther., 207, 566,

    Google Scholar 

  13. Rush, G.F., Wilson, D.M. and Hook, J.B., Selective induction and inhibition of renal mixed function oxidases in the rat and rabbit, Fund. Appl. Toxicol., 3, 161, 1983.

    CAS  Google Scholar 

  14. Kuo, C.-H., Rush, G.F. and Hook, J.B., Renal cortical accumulation of phenobarbital in rats and rabbits: lack of correlation with induction of renal microsomal monooxygenases, J. Pharmacol. Exp. Ther., 220, 547, 1982.

    PubMed  CAS  Google Scholar 

  15. Lake, B.G., Hopkins, R., Chakraborty, J., Bridges, J.W. and Parke, D.V.W., The influence of some hepatic enzyme inducers and inhibitors on extrahepatic drug metabolism, Drug Metab. Disp., 1, 342, 1973.

    CAS  Google Scholar 

  16. Rush, G.F., Maita, K., Sleight, S.D. and Hook, J.B., Induction of rabbit renal mixed function oxidases by phenobabital: cell specific ultrastructural changes in the proximal tubule, Proc. Soc. Exp. Biol. Med., 172, 430, 1983.

    PubMed  CAS  Google Scholar 

  17. Smith, J.H., Rush, G.F. and Hook, J.B., Induction of renal and hepatic mixed function oxidases in the hamster and guinea pig, Toxicology, 38, 209, 1986.

    PubMed  CAS  Google Scholar 

  18. Masters, B.S.S., Okita, R.T., Yasukochi, Y., Parkhill, L.K. and Dees, J.H., Properties, function, and localization of two cytochromes P-450 from liver and kidney, in Proteins in Biology and Medicine, Bradshaw, R.A., ed.,Academic Press, New York, 1982, 183.

    Google Scholar 

  19. Poland, A., Glover, E. and Kende, A.S., Stereospecific high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol, J. Biol. Chem., 251, 4936, 1976.

    PubMed  CAS  Google Scholar 

  20. Aitio, A. and Parkki, M.G., Organ specific induction of drug metabolizing enzymes by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat, Toxicol. Appl. Pharmacol., 44, 107, 1978.

    CAS  Google Scholar 

  21. Fry, J.R. and Perry, N.K., The effect of Aroclor 1254 pretreatment on the phase I and phase II metabolism of 7-ethoxycoumarin in isolated viable rat kidney cells, Biochem. Pharmacol., 30, 1197, 1981.

    CAS  Google Scholar 

  22. Uotila, P., Parkki, M.G. and Aitio, A., Quantitative and qualitative changes in the metabolism of benzo(a)pyrene in rat tissues after intragastric administration of TCDD, Toxicol. Appl. Pharmacol., 46, 671, 1978.

    CAS  Google Scholar 

  23. Liem, H.H., Muller-Eberhard, U. and Johnson, E.F., Differential induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin of multiple forms of rabbit microsomal cytochrome P-450: evidence for tissue specificity, Mol. Pharmacol., 18, 565, 1980.

    CAS  Google Scholar 

  24. Dees. J.H., Masters, B.S.S., Muller-Eberhard, U. and Johnson, E.F., Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin and phenobarbital on the occurrence and distribution of four cytochrome P-450 isozymes in rabbit kidney, lung, and liver, Cancer Res., 42, 1423, 1982.

    Google Scholar 

  25. Dees, J.H., Coe, L.D., Yasukochi, Y. and Masters, B.S.S., Immunofluorescence of NADPH-cytochrome c (P-450) reductase in rat and minipig tissues injected with phenobarbital, Science, 208, 1473, 1980.

    PubMed  CAS  Google Scholar 

  26. Dees, J.H., Parkhill, L.K., Okita, R.T., Yasukochi, Y. and Masters, B.S.S., Localization of NADPH-cytochrome P-450 reductase and cytochrome P-450 in animal kidneys, in Nephrotoxicity: Assessment and Pathogenesis, Bach, P.H., Boner, F.W., Bridges, J.W., and Lock, E.A., eds., John Wiley & Sons, New York, 1982, 246.

    Google Scholar 

  27. Ogita, K., Kusunose, E., Ichihara, K. and Kusunose, M., Multiple forms of cytochrome P-450 in kidney cortex microsomes of rabbits treated with 3- methylcholanthrene, J. Biochem., 92, 921, 1982.

    PubMed  CAS  Google Scholar 

  28. Ogita, K., Kusunose, E., Yamamoto, S., Ichihara, K. and Kusunose, M., Multiple forms of cytochrome P-450 from kidney cortex microsomes of rabbits treated with phenobarbital, Biochem. Int., 6, 191, 1983.

    CAS  Google Scholar 

  29. Hook, J.B., Elcombe, C.R., Rose, M.S. and Lock, E.A., Characterization of the effects of known hepatic monooxygenase inducers on male and female rat and mouse kidneys, Life Sei., 31, 1077, 1982.

    CAS  Google Scholar 

  30. Krijsheld, K.R. and Gram, T.E., Selective induction of renal microsomal cytochrome P-450-linked monooxygenases by 1,1-dichloroethylene in mice, Biochem. Pharmacol., 33, 1951, 1984.

    Google Scholar 

  31. Smith, J.H., Maita, K., Sleight, S.D. and Hook, J.B., Effect of sex hormone status on chloroform nephrotoxicity and renal mixed function oxidases in mice, Toxicology, 30, 305, 1984.

    PubMed  CAS  Google Scholar 

  32. Zenser, T.V., Mattammal, M.B. and Davis, B.B., Differential distribution of the mixed function oxidase in rabbit kidney, J. Pharmacol. Exp. Ther., 207, 719, 1978.

    PubMed  CAS  Google Scholar 

  33. Endou, H., Cytochrome P-450 monooxygenase system in the kidney: its intranephron localization and its induction, Jpn. J. Pharmacol., 33, 423, 1983.

    CAS  Google Scholar 

  34. Smith, J.H. and Hook, J.B., Mechanism of chloroform nephrotoxicity. III. Renal and hepatic microsomal metabolism of chloroform in mice, Toxicol. Appl. Pharmacol., 73, 511, 1984.

    CAS  Google Scholar 

  35. Litterst, C.L., Mimnaugh, E.G. and Gram, T.E., Alterations in extrahepatic drug metabolism by factors known to affect hepatic activity, Biochem. Pharmacol., 26, 749, 1977.

    CAS  Google Scholar 

  36. Hawke, R.L. and Welch, R.M., Major differences in the specificity and regulation of mouse renal cytochrome P-450 dependent monooxygenases, Molec. Pharmacol., 27, 283, 1985.

    Google Scholar 

  37. Fowler, B.A., Hook, G.E.R. and Lucier, G.W., 2,3,7,8-Tetrachlorodibenzo-p- dioxin induction of renal microsomal enzyme systems: ultrastructural effects on pars recta (S3) proximal tubule cells of rat kidney, J. Pharmacol. Exp. Ther., 203, 712, 1977.

    PubMed  CAS  Google Scholar 

  38. Cojocel, C., Maita, K., Pasino, D.A., Kuo, C.-H. and Hook, J.B., Metabolic heterogeneity of the proximal and distal kidney tubules, Life Sei., 33, 855, 1983.

    CAS  Google Scholar 

  39. Maunsbach, A.B., Observations on the segmentation of the proximal tubule in the rat kidney. Comparison of results from phase contrast, fluorescence and electron microscopy, J. Ultrastruct. Res., 16, 239, 1966.

    PubMed  CAS  Google Scholar 

  40. Woodhall, P.B., Tisher, C.C., Simonton, C.A. and Robinson, R.R., Relationship between para-aminohippurate secretion and cellular morphology in rabbit proximal tubules, J. Clin. Invest., 51, 1320, 1978.

    Google Scholar 

  41. Kaissling, B. and Kriz, W., Structural analysis of the rabbit kidney, in Advances in Anatomy, Embryology and Cell Biology, Vol. 56, Brodal, A., Hild, W., van Limborgh, J., Ortmannm, R., Schievler, T.H., Tondury, G. and Wolff, E., eds., Springer-Verlag, New York, 1979, 123.

    Google Scholar 

  42. Shimomura, A., Chonko, A.M. and Grantham, J.J., Basis for heterogeneity of para-aminohippurate secretion in rabbit proximal tubules, Am. J. Physiol., 240, F430, 1981.

    PubMed  CAS  Google Scholar 

  43. McKinney, T.D., Heterogeneity of organic base secretion by proximal tubules, Am. J. Physiol., 243, F404, 1982.

    PubMed  CAS  Google Scholar 

  44. Schali, C., Schild, L, Overney, J. and Roch-Ramel, F., Secretion of tetraethylammonium by proximal tubules of rabbit kidney, Am. J. Physiol., 245, F238, 1983.

    PubMed  CAS  Google Scholar 

  45. Fowler, B.A., The morphological effects of dieldrin and methyl mercuric chloride on pars recta segments in rat kidney proximal tubules, Am. J. Pathol., 69, 163, 1972.

    PubMed  CAS  Google Scholar 

  46. Rush, G.F., Pratt, I.S., Lock, E.A. and Hook, J.B., Induction of renal mixed function oxidases in the rat and mouse: correlation with ultrastructural changes in the proximal tubule, Fund. Appl. Toxicol., 6, 307, 1986.

    CAS  Google Scholar 

  47. Bock, K.W., Josting, D., Lilienblum, W. and Pfeil, H., Purification of rat- liver microsomal UDP-glucuronyltransferase. Separation of two enzyme forms inducible by 3-methylcholanthrene or phénobarbital, Eur. J. Biochem., 98, 19, 1979.

    PubMed  CAS  Google Scholar 

  48. Bock, K.W., Clausbruch, U.C.V., Kaufmann, R., Lilienblum, W., Oesch, F., Pfeil, H. and Piatt, K.L., Functional heterogeneity of UDP- glucuronyltransf erase in rat tissues, Biochem. Pharmacol., 29, 495, 1980.

    CAS  Google Scholar 

  49. Kluwe, W.M. and Hook, J.B., Comparative induction of xenobiotic metabolism in rodent kidney, testis and liver by commercial mixtures of polybrominated biphenyls and polychlorinated biphenyls, phénobarbital and 3- methylcholanthrene: absolute and temporal effects, Toxicology, 20, 259, 1981.

    PubMed  CAS  Google Scholar 

  50. Hjelle, J.T., Hazelton, G.A., Klaassen, C.D. and Hjelle, J.J., Glucuronida- tion and sulphation in rabbit kidney, J. Pharmacol. Exp. Ther., 236, 150, 1986.

    PubMed  CAS  Google Scholar 

  51. Hanninen, O. and Aitio, A., Enhanced glucuronide formation in different tissues following drug administration, Biochem. Pharmacol., 17, 2307, 1968.

    CAS  Google Scholar 

  52. Aitio, A., Induction of UDP glucuronyltransferase in the liver and extrahepatic organs of the rat, Life Sci., 13, 1705, 1973.

    PubMed  CAS  Google Scholar 

  53. Rush, G.F. and Hook, J.B., Characteristics of renal UDP- glucuronyltransf erase, Life Sci., 35, 145, 1984.

    PubMed  CAS  Google Scholar 

  54. Aitio, A., Vainio, H. and Hanninen, 0., Enhancement of drug oxidation and conjugation by carcinogens in different rat tissue, FEBS Lett., 24, 237, 1972.

    PubMed  CAS  Google Scholar 

  55. Jones, D.P., Sundby, G.-B., Ormstad, K. and Orrenius, S., Use of isolated kidney cells for study of drug metabolism, Biochem. Pharmacol., 28, 929, 1979.

    CAS  Google Scholar 

  56. Kuo, C.-H., Hook, J.B. and Bernstein, J., Induction of drug-metabolizing enzymes and toxicity of trans-stilbene oxide in rat liver and kidney, Toxicology, 22, 149, 1981.

    PubMed  CAS  Google Scholar 

  57. Mandel, H.G., Pathways of drug biotransformation: biochemical conjugations, in Fundamentals of Drug Metabolism and Drug Disposition, LaDu, B.N., Mandel, H.G. and Way, E.L., eds., Williams & Wilkins Co., Baltimore, 1971, 149.

    Google Scholar 

  58. Rush, G.F., Newton, J.F. and Hook, J.B., Sex differences in the excretion of glucuronide conjugates: the role of intrarenal glucuronidation, J. Pharmacol. Exp. Ther., 227, 658, 1983.

    PubMed  CAS  Google Scholar 

  59. Rennick, B.R., Renal tubule transport of organic cations, Am. J. Physiol., 240, F83, 1981.

    PubMed  CAS  Google Scholar 

  60. Meister, A. and Tate, S.S., Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization, Ann. Rev. Biochem., 45, 559, 1976.

    PubMed  CAS  Google Scholar 

  61. Meister, A., Selective modification of glutathione metabolism, Science, 220, 472, 1983.

    PubMed  CAS  Google Scholar 

  62. Orrenius, S., Ormstad, K., Thor, H. and Jewell, S.A., Turnover and functions of glutathione studied with isolated hepatic and renal cells, Fed. Proc., 42, 3177, 1983.

    CAS  Google Scholar 

  63. Morgenstern, R., Lundqvist, G., Anders son, G., Balk, L. and DePierre, J.W., The distribution of microsomal glutathione transferase among different organelles, different organs, and different organisms, Biochem. Pharmacol., 33, 3609, 1984.

    CAS  Google Scholar 

  64. Reed, D.J. and Beatty, P.W., Biosynthesis and regulation of glutathione: toxicological implications, in Reviews in Biochemical Toxicology, Vol 2., Hodgson, E., Bend, J.R. and Philpot, R.M., eds., Elsevier/North-Holland, New York, 1980, 213.

    Google Scholar 

  65. Kaplowitz, N., Physiological significance of glutathione-S-transferases, Am. J. Physiol., 239, G439, 1980.

    PubMed  CAS  Google Scholar 

  66. Moldeus, P., Jones, D.P., Orrastad, K and Orrenius, S., Formation and metabolism of a glutathione-S-conjugate in isolated rat liver and kidney cells, Biochem. Biophys. Res. Commun., 83, 195, 1978.

    CAS  Google Scholar 

  67. Ahokas, J.T., Davies, C., Ravenscroft, P.J. and Enmerson, B.T., Inhibition of soluble glutathione-S-transferase by diuretic drugs, Biochem. Pharmacol., 33, 1929, 1984.

    CAS  Google Scholar 

  68. Hales, B.F., Jaeger, V. and Neims, A.H., Isoelectric focusing of glutathione-S-transferases from rat liver and kidney, Biochem. J., 175, 937, 1978.

    PubMed  CAS  Google Scholar 

  69. Fine, L.G., Goldstein, E.J., Trizna, W., Rozmaryn, L. and Arias, I.M., Glutathione-S-transferase activity in the rabbit nephron: segmental localization in isolated tubules and formation of thiol adducts of ethacrynic acid, Proc. Soc. Exp. Biol. Med., 157, 189, 1978.

    PubMed  CAS  Google Scholar 

  70. Kaplowitz, N., Kuhlenkamp, J. and Clifton, G., Drug induction of hepatic glutathione-S-transferases in male and female rats, Biochem. J., 146, 351, 1975.

    PubMed  CAS  Google Scholar 

  71. Clifton, G., Kaplowitz, N., Wallin, J.D. and Kuhlenkamp, J., Drug induction and sex differences of renal glutathione-S-transferases in the rat, Biochem. J., 150, 259, 1975.

    PubMed  CAS  Google Scholar 

  72. Chasseaud, L.F., Extrahepatic conjugation with glutathione, in Extrahepatic Metabolism of Drugs and Other Foreign Compounds Gram, T.E., ed., Spectrum Publications, New York, 1980, 427.

    Google Scholar 

  73. Kaplowitz, N., Clifton, G., Kuhlenkamp, J. and Wallin, J.D., Comparison of renal and hepatic glutathione-S-transferases in the rat, Biochem. J., 158, 243, 1976.

    PubMed  CAS  Google Scholar 

  74. Kuo, C.-H., Braselton, W.E. and Hook, J.B., Effect of phenobarbital on cephaloridine toxicity and accumulation in rabbit and rat kidneys, Toxicol. Appl. Pharmacol., 64, 244, 1982.

    CAS  Google Scholar 

  75. Rankin, B.B., Mclntyre, T.M. and Curthoys, N.P., Brush border membrane hydrolysis of S-benzyl-cysteine-p-nitroaniline, an activity of aminopep- tidase M, Biochem. Biophys. Res. Commun., 96, 991, 1980.

    CAS  Google Scholar 

  76. Mclntyre, T.M. and Curthoys, N.P., The interorgan metabolism of glutathione, Int. J. Biochem., 12, 545, 1980.

    Google Scholar 

  77. Green, R.M. and Elce, J.S., Acetylation of S-substituted cysteines by a rat liver and kidney microsomal N-acetyl transferase, Biochem. J., 147, 283, 1975.

    CAS  Google Scholar 

  78. Elce, J.S., Metabolism of a glutathione conjugate of 2-hydroxyoestradiol by rat liver and kidney microsomal N-acetyltransferase, Biochem. J., 116, 913, 1970.

    CAS  Google Scholar 

  79. Hughey, R.P., Rankin, B.B., Elce, J.S. and Curthoys, N.P., Specificity of a particulate rat renal peptidase and its localization along with other enzymes of mercapturic acid synthesis, Arch. Biochem. Biophys., 186, 211, 1978.

    CAS  Google Scholar 

  80. Newton, J.F., Hoefle, D., Gemborys, M.W., Mudge, G.H. and Hook, J.B., Metabolism and excretion of a glutathione conjugate of acetaminophen in the isolated perfused rat kidney, J. Pharmacol. Exp. Ther., 237, 519, 1986.

    PubMed  CAS  Google Scholar 

  81. Duffel, M.W. and Jakoby, W.B., Cysteine S-conjugate N-acetyltransferase from rat kidney microsomes, Molec. Pharmacol., 21, 444, 1982.

    CAS  Google Scholar 

  82. Newton, J.F., Braselton, W.E., Kuo, C.-H., Kluwe, W.M., Gemborys, M.W., Mudge, G.H. and Hook, J.B., Metabolism of acetaminophen by the isolated perfused kidney, J. Pharmacol. Exp. Ther., 221, 76, 1982.

    PubMed  CAS  Google Scholar 

  83. Stevens, J. and Jakoby, W.B., Cysteine conjugate p-lyase, Molec. Pharmacol., 23, 761, 1983.

    CAS  Google Scholar 

  84. Lash, L.H., Elfarra, A.A. and Anders, M.W., Renal cysteine conjugate fi- lyase. Bioactivation of nephrotoxic cysteine S-conjugates in mitochondrial outer membrane, J. Biol. Chem., 261, 5930, 1986.

    PubMed  CAS  Google Scholar 

  85. Bekersky, I., Colburn, W.A., Fishman, L. and Kaplan, S.A., Metabolism of salicylic acid in the isolated perfused rat kidney. Interconversion of salicyluric and salicylic acids, Drug Metab. Disp., 8, 319, 1980.

    CAS  Google Scholar 

  86. Wan, S.H. and Riegelman, S., Renal contribution to overall metabolism of drug. Is Conversion of benzoic acid to hippuric acid, J. Pharm. Sci., 61, 1278, 1972.

    PubMed  CAS  Google Scholar 

  87. Wan, S.H. and Riegelman, S., Renal contribution to overall metabolism of drugs. II: Biotransformation of salicylic acid to salicyluric acid, J. Pharm. Sci., 61, 1284, 1972.

    PubMed  CAS  Google Scholar 

  88. Wan, S.H. and Riegelman, S., Renal contribution to overall metabolism of drugs. Ill: Metabolism of p-aminobenzoic acid, J. Pharm. Sci., 61, 1288, 1972.

    PubMed  CAS  Google Scholar 

  89. Schmassmann, H., Sparrow, A., Piatt, K. and Oesch, F., Epoxide hydratase and benzo(a)pyrene monooxygenase activities in liver, kidney and lung after treatment of rats with epoxides of widely varying structures, Biochem. Pharmacol., 27, 2237, 1978.

    CAS  Google Scholar 

  90. Oesch, F. and Schmassmann, H., Species and organ specificity of the trans- stilbene oxide induced effects on epoxide hydratase and benzo(a)pyrene monooxygenase activity in rodents, Biochem. Pharmacol., 28, 171, 1979.

    CAS  Google Scholar 

  91. VanCantfort, J., Manil, L., Gielin, J.E., Glatt, H.R. and Oesch, F., A new assay for glutathione-S-transferase using [H]-benzo(a)pyrene 4,5-oxide as substrate, Biochem. Pharmacol., 28, 455, 1979.

    CAS  Google Scholar 

  92. DePierre, J.W., Seidegard, J. Morgenstern, R., Balk, L., Meijer, J., Astrom, A., Norelius, I. and Ernster, L., Induction of cytosolic glutathione transferase and microsomal epoxide hydrolase activities in extrahepatic organs of the rat by phénobarbital, 3-methylcholanthrene and trans-stilbene oxide, Xenobiotica, 14, 295, 1984.

    PubMed  CAS  Google Scholar 

  93. Hjelle, J.T., Peterson, D.R. and Hjelle, J.J., Drug metabolism in isolated proximal tubule cells: aldehyde dehydrogenase, J. Pharmacol. Exp. Ther., 224, 699, 1983.

    PubMed  CAS  Google Scholar 

  94. Dietrich, R.A., Tissue and subcellular distribution of mammalian aldehyde- oxidizing capacity, Biochem. Pharmacol., 15, 1911, 1966.

    Google Scholar 

  95. Duggin, G.G., Mechanisms in the development of analgesic nephropathy, Kidney Int., 18, 553, 1980.

    PubMed  CAS  Google Scholar 

  96. Bach, P.H. and Bridges, J.W., Chemically induced renal papillary necrosis and upper urothelial carcinoma, CRC Crit. Rev. Toxicol., 15, 217, 1985.

    CAS  Google Scholar 

  97. Davis, B.B., Mattammal, M.B. and Zenser, T.V., Renal metabolism of drugs and xenobiotics, Nephron, 27, 187, 1981.

    PubMed  CAS  Google Scholar 

  98. Marnett, L., Wlodawer, P. and Samuelsson, B., Co-oxygénâtion of organic substrates by the prostaglandin synthetase of sheep vesicular gland, J. Biol. Chem., 250, 8510, 1975.

    PubMed  CAS  Google Scholar 

  99. Eling, T., Boyd, J., Reed, G., Mason, R. and Sivarajah, K., Xenobiotic metabolism by prostaglandin endoperoxide synthetase, Drug Metab. Rev., 14, 1023, 1983.

    CAS  Google Scholar 

  100. Zenser, T.V., Levitt, M. and Davis, B., Effect of oxygen and solute on PGE and PGF production by rat kidney slices, Prostaglandins, 13, 143, 1977.

    PubMed  CAS  Google Scholar 

  101. Zenser, T.V., Mattanmal, M. and Davis, B., Demonstration of separate pathways for the metabolism of organic compounds in rabbit kidney, J. Pharmacol. Exp. Ther., 208, 418, 1979.

    PubMed  CAS  Google Scholar 

  102. Rollins, T. and Smith, W., Subcellular localization of prostaglandin-forming cyclooxygenase in Swiss Mouse 313 fibroblasts by electron microscopi iirraminocytochemistry, J. Biol. Chem., 255, 4872, 1980.

    PubMed  CAS  Google Scholar 

  103. Zenser, T.V., Mattanmal, M.B., Rapp, N.S. and Davis, B.B., Effect of aspirin on metabolism of acetaminophen and benzidine by renal inner medulla prostaglandin hydroperoxidase, J. Lab. Clin. Med., 101, 58, 1983.

    PubMed  CAS  Google Scholar 

  104. Flower, R.J., Drugs which inhibit prostaglandin biosynthesis, Pharmacol. Rev., 26, 33, 1974.

    CAS  Google Scholar 

  105. Mohandas, J., Duggin, G.G., Horvath, J.S. and Tiller, D.J., Regional differences in peroxidative activation of paracetamol (acetaminophen) mediated by cytochrome P450 and prostaglandin endoperoxide synthetase in rabbit kidney, Res. Commun. Chem. Pathol. Pharmacol., 34, 69, 1981.

    PubMed  CAS  Google Scholar 

  106. Zenser, T.V. and Davis, B.B., Enzyme systems involved in the formation of reactive metabolites in the renal medulla: cooxidation via prostaglandin H synthase, Fund. Appl. Toxicol., 4, 922, 1984.

    CAS  Google Scholar 

  107. Zenser, T.V., Mattammal, M. and Davis, B., Metabolism of N-[4-(5-nitro-2- furyl)-2-thiazolyl]formamide by prostaglandin endoperoxide synthetase, Cancer Res., 40, 114, 1980.

    PubMed  CAS  Google Scholar 

  108. Zenser, T., Mattammal, M., Armbrecht, H. and Davis, B., Benzidine binding to nucleic acids mediated by the peroxidative activity of prostaglandin endoperoxide synthetase, Cancer Res., 40, 2839, 1980.

    PubMed  CAS  Google Scholar 

  109. Mattammal, M.B., Zenser, T.V. and Davis, B.B., Prostaglandin hydroperoxidase-mediated 2-amino-4-(5-nitro-2-furyl) -C-thiazole metabolism and nucleic acid binding, Cancer Res., 41, 4961, 1981.

    PubMed  CAS  Google Scholar 

  110. Lind, C., Vadi, H. and Ernster, L., Metabolism of benzo(a)pyrene-3,6-quinone and 3-hydroxybenzo(a)pyrene in liver microsomes from 3-methylcholanthrene- treated rats, Arch. Biochem. Biophys., 190, 97, 1978.

    CAS  Google Scholar 

  111. Mohandas, J., Chennell, A.F., Duggin, G.G., Horvath, J.S. and Tiller, D.J., DT-diaphorase: differential distribution in rabbit kidney and possible protection against quinone toxicity in the inner medulla, Res. Commun. Chem. Pathol. Pharmacol., 43, 463, 1984.

    PubMed  CAS  Google Scholar 

  112. Hook, J.B. and Serbia, V.C., Potentiation of the action of nephrotoxic agents by environmental contaminants, in Nephrotoxic Mechanisms of Drugs and Environmental Toxins, Porter, G.A., ed., Plenum, New York, 1982, 345.

    Google Scholar 

  113. Smith, J.H. and Hook, J.B., Mechanism of chloroform toxicity. II. In vitro evidence for renal metabolism in mice, Toxicol. Appl. Pharmacol., 70, 480, 1983.

    Google Scholar 

  114. Pohl, L.R., Biochemical toxicology of chloroform, in Reviews in Biochemcial Toxicology, Vol. 1, Hodgson, E., Bend, J.R. and Philpot, R.M., eds., Elsevier/North-Holland, New York, 1979, 79.

    Google Scholar 

  115. Smith, J.H., Maita, K., Sleight, S.D. and Hook, J.B., Mechanism of chloroform nephrotoxicity. I. Time course of chloroform toxicity in male and female mice, Toxicol. Appl. Pharmacol., 70, 467, 1983.

    CAS  Google Scholar 

  116. Bailie, M.B., Smith, J.H., Newton, J.F. and Hook, J.B., Mechanism of chloroform nephrotoxicity. IV. Phénobarbital potentiation of in vitro chloroform metabolism and toxicity in rabbit kidneys, Toxicol. Appl. Pharmacol., 74, 285, 1984.

    CAS  Google Scholar 

  117. Ahmadizadeh, M., Kuo, C.-H. and Hook, J.B., Nephrotoxicity and hepatotoxicity of chloroform in mice: effect of deuterium substitution, J. Toxicol. Environ. Health, 8, 105, 1981.

    PubMed  CAS  Google Scholar 

  118. Branchflower, R.V., Nunn, D.S., Highet, R.H., Smith, J.H., Hook, J.B. and Pohl, L.R., Nephrotoxicity of chloroform: metabolism to phosgene by the mouse kidney, Toxicol. Appl. Pharmacol., 72, 159, 1984.

    CAS  Google Scholar 

  119. Mitchell, J.R., McMurtry, R.J., Statham, C.N., and Nelson, S.D., Molecular basis for several drug-induced nephropathies, Am. J. Med., 62, 518, 1977.

    PubMed  CAS  Google Scholar 

  120. Hennis, H.L., Allen, R.C., Hennigar, G.R. and Simmons, M.A., A sensitive method for determinining the nephrotoxic effects of the analgesic acetaminophen upon esterases using isoelectric focusing, Electrophoresis, 2, 187, 1981.

    CAS  Google Scholar 

  121. McMurtry, R.J., Snodgrass, W.R. and Mitchell, J.R., Renal necrosis, glutathione depletion and covalent binding after acetaminophen, Toxicol. Appl. Pharmacol., 46, 87, 1978.

    CAS  Google Scholar 

  122. Newton, J.F., Yoshimoto, J., Bernstein, J., Rush, G.F. and Hook, J.B., Acetaminophen nephrotoxicity in the rat. I. Strain differences in nephrotoxicity and metabolism, Toxicol. Appl. Pharmacol., 69, 291, 1983.

    CAS  Google Scholar 

  123. Mitchell, J.R., Jollow, D.J., Potter, W.Z., Davis, D.C., Gillette, J.R. and Brodie, B.B., Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism, J. Pharmacol. Exp. Ther. 187, 185, 1973.

    CAS  Google Scholar 

  124. Nelson, S.D., Metabolic activation and drug toxicity, J. Med. Chem., 19, 140, 1982.

    Google Scholar 

  125. Newton, J.F., Bailie, M.B. and Hook, J.B., Acetaminophen nephrotoxicity in the rat. Renal metabolic activation in vitro, Toxicol. Appl. Pharmacol., 70, 433, 1983.

    CAS  Google Scholar 

  126. Calder, I.C., Yong, A.C., Woods, R.A., Crown, C.A., Ham, K.N. and Tange, J.D., The nephrotoxicity of p-aminophenol. II. The effect of metabolic inhibitors and inducers, Chem.-Biol. Interact., 27, 245, 1979.

    CAS  Google Scholar 

  127. Crowe, C.A., Yong, A.C., Calder, I.C., Ham, K.N. and Tange, J.D., The nephrotoxicity of p-aminophenol. I. The effect of microsomal cytochromes, glutathione and covalent binding in kidney and liver, Chem. Biol. Interact., 27, 235, 1979.

    PubMed  CAS  Google Scholar 

  128. Carpenter, H.M. and Mudge, G.H., Acetaminophen nephrotoxicity. Studies on renal acetylation and deacetylation, J. Pharmacol. Exp. Ther., 218, 161, 1981.

    PubMed  CAS  Google Scholar 

  129. Gemborys, M.W. and Mudge, G.H., Formation and disposition of the minor metabolites of acetaminophen in the hamster, Drug Metab. Disp., 9, 340, 1981.

    CAS  Google Scholar 

  130. Lock, E.A. and Ishmael, J., The hepatotoxicity and nephrotoxicity of hexachlorobutadiene, in Advances in Pharmacology and Therapeutics, Vol. 5., II., Toxicology and Experimental Models, Yoshida, Y., Hagihara, Y., and Ebashi, S., eds., Permagon Press, New York, 1982, 87.

    Google Scholar 

  131. Harleman, J.H. and Seinen, W., Short-term toxicity and reproduction studies in rats with hexachloro-(1,3)-butadiene, Toxicol. Appl. Pharmacol., 47, 1, 1979.

    CAS  Google Scholar 

  132. Lock, E.A. and Ishmael, J., The acute toxic effects of hexachloro-1,3 butadiene on the rat kidney, Arch. Toxicol., 43, 47, 1979.

    CAS  Google Scholar 

  133. Lock, E.A. and Ishmael, J., Hepatic and renal non-protein sulfhydryl concentration following toxic doses of hexachloro-1,3-butadiene in the rat: effect of Aroclor 1254, phenobarbitone, or SKF-525A treatment, Toxicol. Appl. Pharmacol., 57, 79, 1981.

    CAS  Google Scholar 

  134. Berndt, W.O. and Mehendale, H.M., Effects of hexachlorobutadiene (HCBD) on renal function and renal organic ion transport in the rat, Toxicology, 14, 55, 1979.

    PubMed  CAS  Google Scholar 

  135. Davis, M.E., Berndt, W.O. and Mehendale, H.M., Disposition and neph-rotoxicity of hexachloro-1,3-butadiene, Toxicology, 16, 179, 1980.

    PubMed  CAS  Google Scholar 

  136. Wolf, C.R., Hook, J.B. and Lock, E.A., Differential destruction of cytochrome P-450-dependent monooxygenases in rat and mouse kidney following hexachloro-1,3-butadiene administration, Mol. Pharmacol., 23, 206, 1983.

    CAS  Google Scholar 

  137. Hook, J.B., Rose, M.S. and Lock, E.A., The nephrotoxicity of hexachloro-1,3- butadiene in the rat: studies of organic anion and cation transport in renal slices and the effect of monooxygenase inducers, Toxicol. Appl. Pharmacol., 65, 373, 1982

    CAS  Google Scholar 

  138. Kluwe, W.M., Harrington, F.W. and Cooper, S.E., Toxic effects of or- ganohalide compounds on renal tubular cells in vivo and in vitro, J. Pharmacol. Exp. Ther., 220, 597, 1982.

    PubMed  CAS  Google Scholar 

  139. Kluwe, W.M., McNish, M.R., Smithson, K. and Hook, J.B., Depletion by 1,2- dibromoethane, 1,2-dibromo-3-chloropropane, tris(2,3-dibromopropyl)- phosphate, and hexachloro-1,3-butadiene of reduced non-protein sulfhydryl groups in target and non-target organs, Biochem. Pharmacol., 30, 2265, 1981.

    Google Scholar 

  140. Wolf, C.R., Berry, P.N., Nash, J.A., Green, T. and Lock, E.A., Role of microsomal and cytosolic glutathione-S-transferases in the conjugation of hexachloro-l:3-butadiene and its possible relevance to toxicity, J. Pharmacol. Exp. Ther., 228, 202, 1984.

    PubMed  CAS  Google Scholar 

  141. Nash, J.A., King, L.J., Lock, E.A. and Green, T., The metabolism and disposition of hexachloro-l:3-butadiene in the rat and its relevance to nephrotoxicity, Toxicol. Appl. Pharmacol., 73, 124, 1984.

    CAS  Google Scholar 

  142. Jaffe, D., Hassall, C.D., Brendel, K. and Gandolfi, A.J., In vivo and in vitro nephrotoxicity of the cysteine conjugate of hexachlorobutadiene, J. Toxicol. Environ. Health, 11, 57, 1983.

    Google Scholar 

  143. Lock, E.A. and Ishmael, J., Effect of the organic anion transport inhibitor probenecid on renal cortical uptake and proximal tubular toxicity of hexachloro-1,3-butadiene and its conjugates, Toxicol. Appl. Pharmacol., 81, 32, 1985.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers

About this chapter

Cite this chapter

Tarloff, J.B., Goldstein, R.S., Hook, J.B. (1987). Xenobiotic Metabolism in the Mammalian Kidney. In: Bach, P.H., Lock, E.A. (eds) Nephrotoxicity in the experimental and clinical situation. Developments in Nephrology, vol 19-20. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3367-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3367-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8012-5

  • Online ISBN: 978-94-009-3367-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics