Skip to main content

Levels of Polyamine Biosynthetic Decarboxylase Activities as Indicators of the Degree of Malignancy of Human Primary Central Nervous System Tumors

  • Chapter
Brain Oncology Biology, diagnosis and therapy

Part of the book series: Developments in Oncology ((DION,volume 52))

  • 49 Accesses

Abstract

The polyamines, putrescine, spermidine and spermine, which are ubiquitous organic cations of low molecular weight in all living organisms, are distributed in the different areas of mammalian central nervous system (CNS) (1–8). The levels of polyamines vary markedly between brain regions (9, 10). Areas with considerable white matter contain higher levels of spermidine, although this correlation with white matter is by no means perfect (10–12). These polyamines are known to be synthesized in human nervous tissues, because the presence of the four enzymes of the biosynthesis pathway of polyamines, i.e., L-ornithine decarboxylase (EC 4.1.1.17) (ODC), S-adenosyl-Lmethionine decarboxylase (EC 4.1.1.50) (AMD), spermidine synthase (EC 2.5.1.16) and spermine synthase (EC 2.5.1.—) in mammalian CNS in now well documented (9,13,14). These polyamines can diffuse from human nervous tissues into cerebrospinal fluid (CSF) (15). It has been demonstrated that interconversion of polyamines can also take place in mammalian CNS (8, 16, 17). Although the physiological function of these amines is still not well understood at the molecular level, an abundant literature suggests that the concentrations of polyamines inside the eukaryotic cells are highly regulated and that polyamines play essential roles in cellular growth (whether normal or neoplastic) and differentiation (for review see 18, 19).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kremzner (L.T.): Metabolism of polyamines in the nervous system. Fed. Proc., 29: 1583–1588 (1970).

    PubMed  CAS  Google Scholar 

  2. Russell (D.H.), Medina (V.J.), Snyder (S.H.): The dynamics of synthesis and degradation of polyamines in normal and regenerating rat liver and brain. J. Biol. Chem., 245: 6732–6738 (1970).

    PubMed  CAS  Google Scholar 

  3. Shaskan (E.G.), Snyder (S.H.): Polyamine turnover in different regions of rat brain. J. Neurochem., 20: 1453–1460 (1973).

    Article  PubMed  CAS  Google Scholar 

  4. Shaw (G.G.), Pateman (A.J.): The regional distribution of the polyamines spermidine and spermine in brain. J. Neurochem., 20: 1225–1230 (1973).

    Article  PubMed  CAS  Google Scholar 

  5. Harik (S.I.), Snyder (S.H.): Putrescine: regional distribution in the nervous system of the rat and the cat. Brain Res., 66: 328–331 (1974).

    Article  CAS  Google Scholar 

  6. Seiler (N.), Lamberty (U.): Interrelations between polyamines and nucleic acids: changes of polyamine and nucleic acid concentrations in the developing rat brain. J. Neurochem., 24: 5–13 (1975).

    Article  PubMed  CAS  Google Scholar 

  7. Seiler (N.), Schmidt-Glenewinkel (T.): Regional distribution of putrescine, spermidine and spermine in relation to the distribution of RNA and DNA in the rat nervous system. J. Neurochem., 24: 791–795 (1975).

    PubMed  CAS  Google Scholar 

  8. Halliday (C.A.), Shaw (G.C.): The distribution and metabolism of putrescine, spermidine and spermine injected into the cerebral ventricles of rabbits. J. Neurochem., 26: 1199–1205 (1976).

    Article  PubMed  CAS  Google Scholar 

  9. Kremzner (L.T.), Barrett (R.E.), Terrano (M.J.): Polyamine metabolism in the central and peripheral nervous system. Ann. N.Y. Acad. Sci., 171: 735–748 (1970).

    Article  CAS  Google Scholar 

  10. Snyder (S.H.) Shaskan (E.G.), Marik (S.I.): Polyamine disposition in the central nervous system. In: Polyamines in Normal and Neoplastic Growth. Ed. D.H. Russell, Raven Press, New York, pp. 199–213 (1973).

    Google Scholar 

  11. Shimizu (H.), Kakimoto (Y.), Sano (I.): The determination and distribution of polyamines in mammalian nervous system. J. Pharmac. Exp. Ther., 143: 199–204 (1974).

    Google Scholar 

  12. Kremzner (L.T.): Polyamine metabolism in normal and neoplastic neural tissue. In : Polyamines in Normal and Neoplastic Growth. Ed. D.H. Russell, Raven Press, New York, pp. 27–40 (1973).

    Google Scholar 

  13. Shaskan (E.G.), Haraszti (J.H.), Snyder (S.H.): Polyamines: developmental alterations in regional disposition and metabolism in rat brain. J. Neurochem., 20: 1443–1452 (1973).

    Article  PubMed  CAS  Google Scholar 

  14. Raina (A.), Pajula (R.L.), Eloranta (T.): A rapid assay method for spermidine and spermine synthases. Distribution of polyamine-synthesizing enzymes and methionine adenosyltransferase in rat tissues. FEBS Lett., 67: 252–255 (1976).

    Article  PubMed  CAS  Google Scholar 

  15. Shaw (G.G.): The polyamines in the central nervous system. Biochem. Pharmacol., 28: 1–6 (1979).

    Article  PubMed  CAS  Google Scholar 

  16. Sturman (J.A.), Ingoglia (N.A.), Lindquist (T.D.): Interconversion of putrescine, spermidine and spermine in goldfish and rat retina. Life Sci., 19: 719–724 (1976).

    Article  PubMed  CAS  Google Scholar 

  17. Seiler (N.), Bolkenius (F.N.): Polyamine reutilization and turnover in brain. Neurochem. Res., 10: 529–544 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. Scalabrino (G.), Ferioli (M.E.): Polyamines in mammalian tumors. Part I. Adv. Cancer Res., 35: 151–268 (1981).

    Article  CAS  Google Scholar 

  19. Scalabrino (G.), Ferioli (M.E.): Polyamines in mammalian tumors. Part II. Adv. Cancer Res., 36: 1–102 (1982).

    Article  CAS  Google Scholar 

  20. Seidenfeld (J.), Marton (L.J.): Biochemical markers of central nervous system tumors measured in cerebrospinal fluid and their potential use in diagnosis and patient management: a review. J. Natl. Cancer Inst., 63: 919–931 (1979).

    PubMed  CAS  Google Scholar 

  21. Tribolet (N. de), Carrel (S.): Human glioma tumour-associated antigens. Cancer Immunol. Immunother., 9: 207–211 (1980).

    Article  Google Scholar 

  22. Wickstrand (C.J.), Bigner (D.D.): Immunobiologic aspects of the brain and human gliomas. Am. J. Pathol., 98: 515–567 (1980).

    Google Scholar 

  23. Marton (L.J.): Polyamines and brain tumors. Natl. Cancer Inst. Monogr., 46: 127–131 (1977).

    PubMed  CAS  Google Scholar 

  24. Marton (L.J.): Polyamines and brain tumors: relationship to patient monitoring and therapy; Adv. Polyamine Res., 3: 425–430 (1981).

    Google Scholar 

  25. Marton (L.J.): CSF polyamines. Potential as brain tumor markers. Arch. Neurol., 38: 73–74 (1981).

    PubMed  CAS  Google Scholar 

  26. Marton (L.J.), Heby (O.), Levin (V.A.), Lubich (W.P.), Crafts (D.C.), Wilson (C.B.): The relationship of polyamines in cerebrospinal fluid to the presence of central nervous system tumors. Cancer Res., 36: 973–977 (1976).

    PubMed  CAS  Google Scholar 

  27. Marton (L.J.), Edwards (M.S.), Levin (V.A.), Lubich (W.P.), Wilson (C.B.): Predictive value of cerebrospinal fluid polyamines in medulloblastoma. Cancer Res., 39: 993–997 (1979).

    PubMed  CAS  Google Scholar 

  28. Marton (L.J.), Edwards (M.S.), Levin (V.A.), Lubich (W.P.), Wilson (C.B.): CSF polyamines: a new and important means of monitoring patients with medulloblastoma. Cancer, 47: 757–760 (1981).

    Article  PubMed  CAS  Google Scholar 

  29. Fulton (D.S.), Levin (V.A.), Lubich (W.P.), Wilson (C.B.), Marton (L.J.): Cerebrospinal fluid polyamines in patients with glioblastoma multiforme and anaplastic astrocytoma. Cancer Res., 40: 3293–3296 (1980).

    PubMed  CAS  Google Scholar 

  30. Fulton (D.S.), Marton (L.J.), Lubich (W.P.), Wilson (C.B.): Polyamine levels in CSF from patients with pituitary tumors or nonneoplastic pituitary disease. Arch. Neurol., 39: 47–48 (1982).

    PubMed  CAS  Google Scholar 

  31. Pierangeli (E.), Levin (V.A.), Seidenfeld (J.), Marton (L.J.): Putrescine diffusion in cat brain and capillary permeability in rat brain: relation to CSF putrescine levels in brain tumor patients. Eur. J. Cancer, 17: 143–147 (1981).

    Article  Google Scholar 

  32. Harik (S.I.), Sutton (C.H.): Putrescine as a biochemical marker of malignant brain tumors. Cancer Res., 39: 5010–5015 (1979).

    PubMed  CAS  Google Scholar 

  33. Scalabrino (G.), Modena (D.), Ferioli (M.E.), Puerari (M.), Luccarelli (G.): Degrees of malignancy in human primary central nervous system tumors: ornithine decarboxylase levels as better indicators than adenosylmethionine decarboxylase levels. J. Natl. Cancer Inst., 68: 751–754 (1982).

    PubMed  CAS  Google Scholar 

  34. Williams-Ashman (H.G.), Coppoc (G.L.), Weber (G.): Imbalance in ornithine metabolism in hepatomas of different growth rates as expressed in formation of putrescine, spermidine and spermine. Cancer Res., 32: 1924–1932 (1972).

    PubMed  CAS  Google Scholar 

  35. O’Brin (T.G.): The induction of ornithine decarboxylase as early, possibly obligatory, event in mouse skin cancerogenesis. Cancer Res., 36: 2644–2653 (1976).

    Google Scholar 

  36. Boutwell (R.K.), O’Brien (T.G.), Verma (A.K.), Weekes (R.G.), Young (L.M. de), Ashendel (C.L.), Astrup (E.G.): The induction of ornithine decarboxylase activity and its control in mouse skin epidermis. Adv. Enzyme Regul., 17: 89–112 (1979).

    Article  CAS  Google Scholar 

  37. Scalabrino (G.), Pigatto (P.), Ferioli (M.E.), Modena (D.), Puerari (M.), Caru (A.): Levels of activity of the polyamine biosynthetic decarboylases as indicators of degree of malignancy of human cutaneous epitheliomas. J. Invest. Dermatol., 74: 122–124 (1980).

    Article  PubMed  CAS  Google Scholar 

  38. Stell (G.G.): Growth kinetics of brain tumours. In: Brain Tumors. Eds. D.G.T. Thomas, D.I. Graham, Butterworths, London, pp. 10–20 (1980).

    Google Scholar 

  39. Rubinstein (L.J.): Tumors of the central nervous system. In: Atlas of Tumor Pathology, 2nd Series, Fascicle 6. Armed Forces Inst. of Pathology, Washington D.C., pp. 169–190 (1972).

    Google Scholar 

  40. Crompton (M.R.), Gautier-Smith (P.C.): The prediction of recurrence in meningiomas. J. Neurol. Neurosurg. Psychiat., 33: 80–87 (1970).

    Article  PubMed  CAS  Google Scholar 

  41. Anderson (T.R.), Schanberg (S.M.): Ornithine decarboxylase activity in developing rat brain. J. Neurochem., 19: 1471–1481 (1972).

    Article  PubMed  CAS  Google Scholar 

  42. Schmidt (G.L.), Cantoni (G.L.): Adenosylmethionine decarboxylase in developing rat brain. J. Neurochem., 20: 1373–1385 (1973).

    Article  PubMed  CAS  Google Scholar 

  43. Sturman (J.A.), Gaull (G.E.): Polyamine biosynthesis in human fetal liver and brain. Pediat. Res., 8: 231–237 (1974).

    Article  PubMed  CAS  Google Scholar 

  44. Gilad (G.M.), Kopin (I.J.): Neurochemical aspects of neuronal ontogenesis in the developing rat cerebellum: changes in neurotransmitter and polyamine synthesizing enzymes. J. Neurochem., 33: 1195–1204 (1979).

    Article  PubMed  CAS  Google Scholar 

  45. Slotkin (T.A.): Ornithine decarboxylase as a tool in developmental neurobiology. Life Sci., 24: 1623–1630 (1979).

    Article  PubMed  CAS  Google Scholar 

  46. Laitinen (S.I.), Laitinen (P.H.), Hietala (O.A.), Pajunen (A.E.I.), Piha (R.S.): Developmental changes in mouse brain polyamine metabolism. Neurochem. Res., 7: 1477–1485 (1982).

    Article  PubMed  CAS  Google Scholar 

  47. Ruel (J.), Chénard (C.), Coulombe (P.), Dussault (J.H.): Thyroid hormones modulate ornithine decarboxylase in the immature rat cerebellum. Can. J. Physiol. Pharmacol., 62: 1279–1283 (1984).

    Article  PubMed  CAS  Google Scholar 

  48. Anderson (T.R.), Schanberg (S.M.): Effect of tyroxine and cortisol on brain ornithine decarboxylase activity and swimming behavior in developing rat. Biochem. Pharmacol., 24: 495–501 (1975).

    Article  PubMed  CAS  Google Scholar 

  49. Grillo (M.A.), Fossa (T.), Dianzani (U.): Arginase, ornithine decarboxylase and S-adenosylmethionine decarboxylase in chicken brain and retina. Int. J. Biochem., 15: 1081–1084 (1983).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Luccarelli, G., Ferioli, M.E., Broggi, G., Scalabrino, G. (1987). Levels of Polyamine Biosynthetic Decarboxylase Activities as Indicators of the Degree of Malignancy of Human Primary Central Nervous System Tumors. In: Chatel, M., Darcel, F., Pecker, J. (eds) Brain Oncology Biology, diagnosis and therapy. Developments in Oncology, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3347-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3347-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8003-3

  • Online ISBN: 978-94-009-3347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics