Skip to main content

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 12))

Abstract

The widening of the clinical application field of PET in the near future depends on its ability to provide clinical or diagnostic information which, in the clinical context, can reduce morbidity or mortality and the risk of treatment, improve patient care, or help to control the cost of medical care (Phelps et al., 1985; Nilsson et al., 1985; Powers et al., 1985; Wagner, 1985). PET correlations with widely applied diagnostic methods or low-cost methods of clinical investigation routinely used in general hospitals must be explored and soon be firmly established so as to allow a significant spreading of any positive results of a therapeutic action studied by PET in a limited group of carefully selected patients. Besides, under certain circumstances, PET can provide invaluable information favoring a therapeutic decision, where the benefit/risk ratio is positive for the patient: the elimination of invasive or agressive tests that are very likely negative, or inefficient revascularization surgery by arterial by-passing on definitely necrotic or unviable brain or heart tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amano, T., Meier, J.S., Okabe, T., et al. 1982. Stable Xenon CT cerebral blood flow measurements computed by a single compartment - double integration model in normal aging and dementia. J. Comput. Assist. Tomogr., 6, 923–932.

    Article  PubMed  CAS  Google Scholar 

  2. Baron, J.C., Samson, Y., Comar, D., et al. 1985. Etude in vivo des récepteurs sérotoninergiques centraux chez l’homme par tomographie a positons. Rev. Neurol. (Paris), 141, 537–545.

    CAS  Google Scholar 

  3. Baron, J.C., Maziere, B., Loc’h, C., et al. 1986. Loss of striatal (76-Br)-Bromospiperone binding sites demonstrated by positron tomography in progressive supranuclear palsy. J. Cereb. Blood Flow Metab., 6, 131–136.

    Article  PubMed  CAS  Google Scholar 

  4. Beaney, R.P., Brooks, D.J., Leenders, K.L., et al. 1985. Blood flow and oxygen utilization in the contralateral cerebral cortex of patients with untreated intracranial tumors as studied by positron emission tomography, with observation on the effect of decompressive surgery. J. Neurol., Neurosurg., Psychiat., 48, 310–319.

    Article  CAS  Google Scholar 

  5. Benson, D.F., Kuhl, D.E., Hawkins, R.A., et al. 1983. The fluorodeoxy-glucose 18-F scan in Alzheimer’s disease and multi-infarct dementia. Arch. Neurol., 40, 711–714.

    Article  PubMed  CAS  Google Scholar 

  6. Bergström, M., Collins, V.P., Ehrin, E., et al. 1983. Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using 68-Ga-EDTA, 11-C glucose, and 11-C methionine. J. Comput. Assist. Tomogr., 7, 1062–1066.

    Article  PubMed  Google Scholar 

  7. Bonte, J.F., Ross, E.D., Chehabi, H.H., et al. 1986. SPECT study of regional cerebral blood flow in Alzheimer’s disease. J. Comput. Assist. Tomogr., 10, 579–583.

    Article  PubMed  CAS  Google Scholar 

  8. Bowen, D.M., White, P., Spillane, J.A., et al. 1979. Accelerated ageing or selective neuronal loss as an important course of dementia? Lancet, 1, 11–14.

    PubMed  CAS  Google Scholar 

  9. Brooks, D.J., Beaney, R.P., Lammertsma, A.A., et al. 1986. Glucose transport across the blood brain barrier in normal human subjects and patients with cerebral tumors studied using 11-C 3–0-Methyl-D-glucose and positron emission tomography. J. Cereb. Blood Flow Metab., 6, 230–239.

    Article  PubMed  CAS  Google Scholar 

  10. Bustany, P., et al. 1983a. In “Functional Radionuclide. Imaging of the Brain” (Eds. P. Magistretti et al.). (Raven Press, New York), pp. 319–326.

    Google Scholar 

  11. Bustany, P., Henry, J.F., Sargent, T., et al. 1983b. Local brain protein metabolism in dementia and schizophrenia, in vivo studies with 11-C-L-Methionine and Positron emission tomography. In “Positron Emission Tomography of the Brain” (Eds. W.-D. Heiss, M.E. Phelps). (Springer Verlag, Berlin), pp. 208–211.

    Google Scholar 

  12. Bustany, P., Henry, J.F., de Rotrou, J., et al. 1985a. Correlations between clinical state and PET measurement of local brain protein synthesis in Alzheimer’s dementia, Parkinson’s disease, schizophrenia, and gliomas. In “The Metabolism of the Human Brain Studied with Positron Emission Tomography” (Eds. T. Greitz et al.). (Raven Press, New York), pp. 241–249.

    Google Scholar 

  13. Bustany, P., et al. 1985b. In “Positron Emission Tomography” (Eds. M. Reivich et al.). (Alan R. Liss Inc., New York), pp. 183–201.

    Google Scholar 

  14. Bustany, P. 1986. Brain tumor protein-synthesis an histological grades: A study by PET with 11-C-L-Methionine. J. Neurol. Oncol., 3, 397–404.

    Article  CAS  Google Scholar 

  15. Clark, C.M., Kessler, R., Buchsbaum, M.S., et al. 1984. Correlational methods for determining regional coupling of cerebral glucose metabolism: a pilot study. Biol. Psychiat., 19, 663–678.

    PubMed  CAS  Google Scholar 

  16. Clark, C., Carson, R., Kessler, R., et al. 1985. Alternative statistical models for the examination of clinical positron emission tomography/fluorodeoxyglucose data. J. Cereb. Blood Flow Metab., 5, 142–150.

    Article  PubMed  CAS  Google Scholar 

  17. Cohen, M.B., Graham, L.S., Lake, R., et al. 1986. Diagnosis of Alzheimer’s disease and multiple infarct dementia by tomographic imaging of iodine 123-IMP. J. Nucl. Med., 27, 769–774.

    PubMed  CAS  Google Scholar 

  18. Cutler, N.R., Haxby, J.V., Duara, R., et al. 1985a. Brain metabolism measured with positron emission tomography: serial assessment in patients with familial Alzheimer’s disease. Neurology, 35, 1556–1561.

    PubMed  CAS  Google Scholar 

  19. Cutler, N., et al. 1985b. In “Normal Aging, Alzheimer’s Disease and Senile Dementia. Aspects on Etiology, Pathogenesis, Diagnosis and Treatment” (Ed. C.G. Gottfries). (Editions de l’Universite de Bruxelles, Bruxelles). pp. 181–198.

    Google Scholar 

  20. Dastur, D.K. 1985. Cerebral blood flow and metabolism in normal human aging, pathological aging, and senile dementia. J. Cereb. Blood Flow Metab., 5, 1–9.

    Article  PubMed  CAS  Google Scholar 

  21. Deon, M. 1984. In “Normal Aging, Alzheimer’s Disease and Senile Dementia. Aspects on Etiology, Pathogenesis, Diagnosis and Treatment” (Ed. C.G. Gottfries). (Editions de l’ Universite de Bruxelles, Bruxelles). pp. 199–202.

    Google Scholar 

  22. Dhawan, V., Conti, J., Mernyk, K.M., et al. 1986. Accuracy of PET RCBF measurements: effect of time shift between blood and brain radioactivity curves. Phys. Med. Biol., 31, 507–514.

    Article  PubMed  CAS  Google Scholar 

  23. Dhiro, G., Daz, R.L., Brooks, R.A., et al. 1982. Glucose utilization of cerebral gliomas measured by (18-F)fluorodeoxyglucose and positron emission tomography. Neurology, 32, 1323–1329.

    Google Scholar 

  24. Duara, R., Margolin, R.A., Robertson-Tchabo, E.A., et al. 1983. Cerebral glucose utilization, as measured with positron emission tomography in 21 resting healthy men between the ages of 21 and 83 years. Brain, 106, 761–775.

    Article  PubMed  Google Scholar 

  25. Duara, R., Grady, C., Haxby, J.V., et al. 1986. Positron emission tomography in Alzheimer’s disease. Neurology, 36, 879–887.

    PubMed  CAS  Google Scholar 

  26. Farkas, T., Ferris, S.H., Wolf, A.P., et al. 1986. 18-F-2-deoxy-2-fluoro-D-glucose as a tracer in the positron emission tomography study of senile dementia. Am. J. Psychiat., 139, 352–353.

    Google Scholar 

  27. Felipo, V., et al. 1986. Neurochem. Res., 11, 63–69.

    Article  PubMed  CAS  Google Scholar 

  28. Ferris, S., et al. 1980. In “Aging of the Brain” (Eds. S. Algeri et al.). (Raven Press, New York), pp. 123–133. (Raven Press

    Google Scholar 

  29. Ford, I. 1983. Can statistics cause brain damage? (Editorial). J. Cereb. Blood Flow Metab., 3, 259–262.

    Article  PubMed  CAS  Google Scholar 

  30. Ford, I. 1986. Confound correlations: Statistical limitations in the analysis of interregional relationships of cerebral metabolic activity. J. Cereb. Blood Flow Metab., 6, 385–388.

    Article  PubMed  CAS  Google Scholar 

  31. Foster, N.L., Chase, T.N., Mansi, L., et al. 1984. Cortical abnormalities in Alzheimer’s disease. Ann. Neurol., 16, 649–654.

    Article  PubMed  CAS  Google Scholar 

  32. Foster, N.L and Chase, T.N. 1986. Cerebral metabolic rate of glucose and Alzheimer’s disease. J. Cereb. Blood Flow Metab., 6 125–127.

    Article  PubMed  CAS  Google Scholar 

  33. Foster, N.L., Chase, T.N., Patronas, N.J., et al. 1986. Cerebral mapping of aproxia in Alzheimer’s disease by positron emission tomography. Ann. Neurol., 19, 139–143.

    Article  PubMed  CAS  Google Scholar 

  34. Frackowiak, R.S.J., Pozzilli, C., Legg, N.J., et al. 1981. Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain, 104, 753–778.

    Article  PubMed  CAS  Google Scholar 

  35. Friedland, R.P., Budinger, T.F., Koss, E., et al. 1985. Alzheimer’s disease: Anterior-posterior and lateral hemispheric alteration in cortical glucose utilization. Neurosci. Letters, 53, 235–240.

    Article  CAS  Google Scholar 

  36. Grubb, R.L., Raichle, M.E., Gado, M.H., et al. 1977. Cerebral blood flow, oxygen utilization and blood volume in dementia. Neurology, 27, 905–910.

    PubMed  Google Scholar 

  37. Gustafson, L., et al. 1981. Adv. biol. Psychiat., 6, 109–116.

    Google Scholar 

  38. Hachinski, V.C., Iliff, L.D., Zilhka, E., et al. 1975. Cerebral blood flow in dementia. Arch. Neurol., 32, 632–637.

    Article  PubMed  CAS  Google Scholar 

  39. Hawkins, R.A., Phelps, M.E., Huang, S.C., et al. 1984. A kinetic evaluation of blood-brain barrier permeability in human brain tumors with 68-Ga-EDTA and positron computed tomography. J. Cereb. Blood Flow Metab., 4, 507–515.

    Article  PubMed  CAS  Google Scholar 

  40. Haxby, J.V., Duara, R., Grady, C.L., et al. 1985. Relation between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. J. Cereb. Blood Flow Metab., 5, 193–200.

    Article  PubMed  CAS  Google Scholar 

  41. Heiss, W.-D., Herholz, K., Pawlik, G., et al. 1986. Positron emission tomography in neuropsychology. Neuropsychologia, 24, 141–149.

    Article  PubMed  CAS  Google Scholar 

  42. Herscovitch, P., Auchus, A.P., Gado, M., et al. 1986. Correction of positron emission tomography data for cerebral atrophy. J. Cereb. Blood Flow Metab., 6, 120–124.

    Article  PubMed  CAS  Google Scholar 

  43. Holman, B.L. 1986. Perfusion and receptor SPECT in dementia - George Taplin Memorial Lecture. J. Nucl. Med., 27, 855–860.

    PubMed  CAS  Google Scholar 

  44. Horwitz, B., Duara, R. and Rapoport, S.I. 1984. Intercorrelations of glucose metabolic rates between brain regions: Application to healthy males in a state of reduced sensory input. J. Cereb. Blood Flow Metab., 4, 484–499.

    Article  PubMed  CAS  Google Scholar 

  45. Hübner, K.F., Purvis, J.T., Mahaley, S.M., et al. 1982. Brain tumor imaging by positron emission computed tomography using 11-C-labeled amino acids. J. Comput. Assist. Tomogr., 6, 544–550.

    Article  PubMed  Google Scholar 

  46. Ilsen, H.W., Sato, M., Pawlik, G., et al. 1984. (68-Ga)-EDTA positron emission tomography in the diagnosis of brain tumors. Neuroradiology, 26, 393–398.

    Article  PubMed  CAS  Google Scholar 

  47. Ingvar, M.C., Maeder, P., Sokoloff, L., et al. 1984. The effects of aging on local rates of cerebral protein synthesis in rats. Monogr. Neurol. Sci., 11, 47–50.

    CAS  Google Scholar 

  48. Israel, L., et al. 1984. Source Book of Geriatric Assessment. Karger, New York.

    Google Scholar 

  49. Ito, M., Lammertsma, A.A., Wise, R.J.S., et al. 1982. Measurement of regional cerebral blood flow and oxygen utilisation in patients with cerebral tumours using 15–0 and positron emission tomography: Analytical techniques and preliminary results. Neuroradiology, 23, 63–74.

    Article  PubMed  CAS  Google Scholar 

  50. Jagust, W.J., Friedland, R.P., Budinger, T.F., et al. 1985. Positron emission tomography with (F-18)Fluorodeoxyglucose differentiates normal pressure hydrocephalus from Alzheimer-type dementia. J. Neurol., Neurosurg., Psychiat., 48, 1091–1096.

    Article  CAS  Google Scholar 

  51. Janowsky, A., Berger, P., Vocci, F., et al., 1986. Characterization of sodium-dependent (3-H)GBR-12935 binding in brain: A radioligand for selective dopamine transport complex. J. Neurochem., 46, 1272–1276.

    Article  PubMed  CAS  Google Scholar 

  52. Kuhl, D.E., Metter, E.J., Riege, W.H., et al. 1982. Effects of human aging on patterns of local cerebral glucose utilization determined by the (18-F)Fluorodeoxyglucose method. J. Cereb. Blood Flow Metab., 2, 163–171.

    Article  PubMed  CAS  Google Scholar 

  53. Kuhl, D.E. 1953. Mapping local cerebral glucose utilization in normal aging and in cerebrovascular, degenerative, and epileptic disorders. In “Positron Emission Tomography of the Brain” (Eds. W.-D. Heiss, M.E. Phelps). (Springer-Verlag, Berlin-Heidelberg-New York), pp. 128–138.

    Google Scholar 

  54. Kuhl, D.E. 1984. Imaging local brain function with emission computed tomography. Radiology, 150, 625–631.

    PubMed  CAS  Google Scholar 

  55. Lammertsma, A.A. and Frackowiak, R.S. 1985. Positron Emission Tomography. CRC Crit. Rev. Biomed. Engineering, 13, 125–169.

    CAS  Google Scholar 

  56. Lassen, N.A., Munck, O., Tottey, E.R., et al. 1959. Mental function and cerebral oxygen consumption in organic dementia. Arch. Neurol., Psychiat., 77, 126–133.

    Google Scholar 

  57. McGeer, E. 1981. Neurotransmitter systems in aging and senile dementia. Prog. Neuropsychopharmacol., 5, 435–445.

    Article  PubMed  CAS  Google Scholar 

  58. Mathis, C.A., Sargent III, T, Shulgin, A.T., et al. 1985. Iodine-122-labeled amphetamine derivate with potential for PET brain flow studies. J. Nucl. Med., 26, 1295–1301.

    PubMed  CAS  Google Scholar 

  59. Metter, E.J., Riege, W.H., Kuhl, D.E., et al. 1984. Cerebral metabolic relationships for selected brain regions in healthy adults. J. Cereb. Blood Flow Metab., 4, 500–506.

    Article  PubMed  CAS  Google Scholar 

  60. Nilsson, J., et al. 1985. In “New Methods in Drug Research” (Ed. A. Makriyannis). (Prous Pub., New York), pp. 69–82.

    Google Scholar 

  61. Obrist, W.D., Chivian, E., Cronquist, S., et al. 1970. Regional cerebral blood flow in senile and presenile dementia. Neurology, 20, 315–322.

    PubMed  CAS  Google Scholar 

  62. Paans, A.M., Yaalburg, W., Woldring, M.G, et al. 1985. A comparison of the sensitivity of PET and NMR for invivo quantitative metabolic imaging. Eur. J. Nucl. Med., 11, 73–75.

    Article  PubMed  CAS  Google Scholar 

  63. Pantano, P., Baron, J.C., Lebrun-Grandie, P., et al. 1984. Regional cerebral blood flow and oxygen consumption in human aging. Stroke, 15, 635–641.

    Article  PubMed  CAS  Google Scholar 

  64. Patronas, N.J., Dhiro, G., Smith B.H., et al. 1984. Depressed cerebellar glucose metabolism in supratentorial tumors. Brain Res., 291, 93–101.

    Article  PubMed  CAS  Google Scholar 

  65. Paul, R., Johansson, R., Kellokumpu-Lehtinen, P.L., et al. 1985. Tumor localization with 18-FDG: comparative autoradiography, glucose 6- phosphatase histochemistry, and histology of renally implanted sarcoma of the rat. Res. Exp. Med., 185, 87–94.

    Article  CAS  Google Scholar 

  66. Perry, E.K., Blessed, G., Tomlinson, B.E., et al. 1981. Neurochemical activities in human temporal lobe related to aging and Alzheimer-type changes. Neurobiol. Aging, 2, 251–256.

    Article  PubMed  CAS  Google Scholar 

  67. Phelps, M.E., Mazziotta, J.C., Schelbert, H.R., et al. 1985. Clinical PET: What are the issues?. J. Nucl. Med., 26, 1353–1358.

    Google Scholar 

  68. Powers, W.J., Raichle, M.E., Wagner, H.N., et al 1985. PET: The new focus of nuclear medicine. J. Nucl. Med., 26, 1499–1500.

    PubMed  CAS  Google Scholar 

  69. Rapoport, S.I., Duara, R., Grady, C.L., et al. 1985. Cerebral glucose utilization in relation to age in man. In “The Metabolism of the Human Brain Studies with Positron Emission Tomography” (Ed. T. Greitz). (Raven Press, New York), pp. 339–350.

    Google Scholar 

  70. Reivich, M. et al. 1983. In “CNS Regulation of Carbohydrates Metabolism - Advances in Metabolic Disorders” (Ed. A. Szabo). (Acad. Press 10, New York). 135–176.

    Google Scholar 

  71. Rhodes, C.G., Wise, R.J.S., Gibbs, J.M., et al. 1983. In vivo disturbances of the oxidative metabolism of glucose in human cerebral gliomas. Ann. Neurol., 14, 614–626.

    Article  PubMed  CAS  Google Scholar 

  72. Risberg, J. 1986. Regional cerebral ood flow in neuropsychology. Neuropsychologic, 24, 135–140.

    Article  CAS  Google Scholar 

  73. Rogers, R.L., Meyer, J.S., Mortel, K.F., et al. 1986. Decreased cerebral blood flow precedes multi-infarct dementia, but follows senile dementia of Alzheimer type. Neurology, 36, 1–6.

    PubMed  CAS  Google Scholar 

  74. Rosen, M.A., Reese, M.J., Yano, Y., et al. 1985. Carbon-11 choline: Synthesis, purification, and brain uptake inhibition by 2-dimethyl-aminoethanol. J. Nucl. Med., 26, 1424–1428.

    PubMed  CAS  Google Scholar 

  75. Rossor, M.N. 1982. Neurotransmitter and CNS disease, dementia. Lancet, 2, 1200–1204.

    Article  PubMed  CAS  Google Scholar 

  76. Sershen, H., Reith, M.E., Gennaro, A., et al. 1981. Effects of cigarette-smoke on protein synthesis in brain and liver. Neuro-pharmacol., 20, 451–456.

    CAS  Google Scholar 

  77. Sharp, P., Gemmell, H., Cherrymann, G., et al. 1986. Application of iodine-123-labeled isopropylamphetamine imaging to the study of dementia. J. Nucl. Med., 27, 761–768.

    PubMed  CAS  Google Scholar 

  78. Smith, C.B. 1984. Aging and changes in cerebral energy metabolism. Trends in Neuro-Sciences, 6, 203–208.

    Article  CAS  Google Scholar 

  79. Sokoloff, L. 1978. Alzheimer’s disease. In “Senile Dementia and Related Disorders, Aging Vol 7” (Eds. R. Katzman, R.D. Terry). (Raven Press, New York), pp. 197–202.

    Google Scholar 

  80. Soncrant, T.T., Horwitz, B., Holloway, W.H., et al. 1986. The pattern of functional coupling of brain regions in the awake rat. Brain Res., 369, 1–11.

    Article  PubMed  CAS  Google Scholar 

  81. Ter-Pogossian, M.M. 1985. PET, SPECT and NMRI: Competing or complementary disciplines? J. Nucl. Med., 26, 1487–1498.

    PubMed  CAS  Google Scholar 

  82. Tyler, J.L., Yamamoto, Y.L., Diksic, M., et al. 1986. Pharmacokinetics of superselective intra-arterial and intravenous (ll-C)BCNU evaluated by PET. J. Nucl. Med., 27, 775–780.

    PubMed  CAS  Google Scholar 

  83. Ulovec, Z., Narancsik, P., Gamulin, et al. 1985. Effects of hypoglycemia on rat brain polyribosome sedimentation pattern. J. Neuro-chem., 45, 352–354.

    CAS  Google Scholar 

  84. Wagner, H.N.Tr., Burns, H.D., Dannals, R.F., et al. 1983. Imaging dopamine receptors in the human brain by positron tomography. Science, 221, 1264–1266.

    Article  PubMed  CAS  Google Scholar 

  85. Wagner, H.N.Jr. 1985. PET: The new focus of nuclear medicine. Reply. J. Nucl. Med., 26, 1500–1501.

    Google Scholar 

  86. Wong, D.F., Wagner, H.N.Jr., Dannals, R.F., et al. 1985. Effects of age on dopamine and Serotonine receptors measured by positron tomography in living human brain. Science, 226, 1393–1396.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 ECSC, EEC, EAEC, Brussels-Luxembourg

About this chapter

Cite this chapter

Bustany, P., Moulin, M. (1987). PET in Dementia and Gliomas. In: Heiss, WD., Pawlik, G., Herholz, K., Wienhard, K. (eds) Clinical efficacy of positron emission tomography. Developments in Nuclear Medicine, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3345-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3345-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8002-6

  • Online ISBN: 978-94-009-3345-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics