Skip to main content

Concentric left ventricular hypertrophy: a simulation study of mechanics related to transmural oxygen demand and perfusion

  • Chapter
Activation, Metabolism and Perfusion of the Heart

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 70))

  • 65 Accesses

Abstract

A comprehensive model which incorporates the local instantaneous and global time dependent cardiac mechanics, perfusion and energetics is used to study related parameters in concentric left ventricular hypertrophy (LVH) due to pressure overload. The mechanical aspects are analyzed with special attention to the effect of hypertrophy on Emax and on the source resistance of the LV. The local balance between mechanics, oxygen demand and coronary flow are studied and compared to experimental data taken from the published literature. The model presented here represents an attempt to develop a quantitative tool for the study of some phenomena related to LVH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burger SB, Strauer BE (1981): Left ventricular hypertrophy in chronic pressure load due to spontaneous essential hypertension, I. Left ventricular function, left ventricular geometry and wall stress, II. Contractility of the isolated left ventricular myocardium and left ventricular stiffness. In: Strauer BE (ed) The heart in hypertension. Springer, New York, p. 1352.

    Google Scholar 

  2. Devereaux RD, Reicheck N (1980): Left ventricular hypertrophy. Cardiovasc Rev Rep 1: 55–68.

    Google Scholar 

  3. Grossman W, Jones D, McLaurin LP (1975): Wall stress and patterns of hypertrophy in the human LV. J Clin Invest 56: 56–64.

    Article  PubMed  CAS  Google Scholar 

  4. Hess OM, Schneider J, Koch R, Bamer C, Grimon J, Krayenbuehl PH (1981): Diastolic function and myocardial structure in patients with myocardial hypertrophy. Circulation 63: 360–371.

    Article  PubMed  CAS  Google Scholar 

  5. Okada T, Okauyama H, Mashima H, Sato H, Kitamura K (1984): Left ventricular function and muscle mechanics in hypertrophied rabbit heart. Am J Physiol 247 (Heart Circ Physiol 16): H699-H706.

    PubMed  CAS  Google Scholar 

  6. Nakamura T, Kimura T, Arai S, Motomiya M, Suzuki S (1984): Left ventricular function of concentric hypertrophied heart after chronic pressure overload as studied in the isolated canine heart preparation. Jpn J Physiol 34: 613–628.

    Article  PubMed  CAS  Google Scholar 

  7. Sasayama S, Ross J, Franklin D, Bloom CM, Bishop S, Dilley RB (1976): Adaptation of the left ventricle to chronic pressure overload. Circ Res 38: 172–178.

    PubMed  CAS  Google Scholar 

  8. Harmell BB, Alpert NR (1977): The mechanical characteristics of hypertrophied rabbit cardiac muscle in the absence of congestive heart failure, The contractile and series elastic element. Circ Res 40: 20–25.

    Google Scholar 

  9. Marcus ML, Mueller TM, Gascho JA, Kerber RE (1979): Effects of cardiac hypertrophy secondary to hypertension on the coronary circulation. Am J Cardiol 44: 1023–1028.

    Article  PubMed  CAS  Google Scholar 

  10. Marcus ML, Koyanayi S, Harrison DG, Doty DB, Hiratza LF, Eastham CL (1983): Abnormalities in the coronary circulation that occur as a consequence of cardiac hypertrophy. Am J Med 75: 62–66.

    Article  PubMed  CAS  Google Scholar 

  11. O’Keefe DD, Hoffman JIE, Cheitlin R, O’Neill MJ, Allard JR, Shapkin E (1978): Coronary blood flow in experimental canine left ventricular hypertrophy. Circ Res 43: 43–51.

    PubMed  Google Scholar 

  12. Bache RJ, Vrobel TR, Aretzen CE, Ring WS (1981): Effect of maximal coronary vasodilatation on transmural myocardial perfusion during tachycardia in dogs with left ventricular hypertrophy. Circ Res 49: 742–750.

    PubMed  CAS  Google Scholar 

  13. Bache RJ, Vrobel TR, Ring WS, Emery RW, Anderson RW (1981): Regional myocardial blood flow during exercise in dogs with chronic left ventricular hypertrophy. Circ Res 48: 76–87.

    PubMed  CAS  Google Scholar 

  14. Parrish DG, Ring WS, Bache RJ (1985): Myocardial perfusion in compensated and failing hypertrophied left ventricle. Am J Physiol 249 (Heart Circ Physiol): H534-H539.

    PubMed  CAS  Google Scholar 

  15. Rembert JC, Kleinman LH, Fedor FM, Wechsler AS, Greenfield, JC (1978): Myocardial blood flow distribution in left ventricular hypertrophy. J Clin Inv 63: 379–386.

    Article  Google Scholar 

  16. Mueller TM, Marcus ML, Kerber RE, Young TA, Barnes RW, Abboud FM (1978): Effect of renal hypertension and left ventricular hypertrophy on the coronary circulation in dogs. Circ Res 47: 543–549.

    Google Scholar 

  17. Beyar R, Sideman S (1984): Computer studies of left ventricular performance based on its fiber structure, sarcomere mechanics and transmural electrical activation propagation. Circ Res 55: 358–374.

    PubMed  CAS  Google Scholar 

  18. Beyar R, Sideman S (1986): Left ventricular mechanics related to the local distribution of oxygen demand throughout the wall. Circ Res 58: 664–677.

    PubMed  CAS  Google Scholar 

  19. Beyar R, Sideman S (1985): Effect of twisting motion on the nonuniformities of transmyocardial fiber mechanics and energy demand, A theoretical study. Special Issue on Modeling and Simulations, IEEE Trans. Biomed Eng, BME 32: 764–769.

    Article  Google Scholar 

  20. Beyar R, Sideman S (1987): Time dependent coronary blood flow distribution in the left ventricular wall. Am J Physiol 252: (Heart Circ Physiol), H417-H433.

    PubMed  CAS  Google Scholar 

  21. Beyar R, Sideman S (1985): A mathematical approach to interrelation between the coronary blood flow and the metabolic demands: In Sideman S, Beyar R (eds) Simulation and imaging of the cardiac system. Martinus Nijhoff Publ, Boston/Dordrecht, pp. 332–357.

    Google Scholar 

  22. Yoran C, Covell JW, Ross J Jr (1973): Structural basis for the ascending limb of left ventricular function. Circ Res 32: 293–303.

    Google Scholar 

  23. Hirtzel HO, Tuchschmid CR, Schnider J, Kraylnbuehl HP, Schaub MC (1985): A relationship between myosin isoenzyme composition, hemodynamics and myocardial structure in various forms of human cardiac hypertrophy. Circ Res 57: 729–740.

    Google Scholar 

  24. Holubarsch CH, Litten RZ, Mullieri LA, Alpert NR (1985): Energetic changes of myocardium as an adaptation to chronic hemodynamic overload and thyroid gland activity. Basic Res Cardiol 80: 582–593.

    Article  PubMed  CAS  Google Scholar 

  25. Nicolas A, Sciacca RR, Weis MB, Blood DK, Brennan DL, Canon PJ (1980): Effect of left ventricular hypertrophy on myocardial blood flow and ventricular performance in systemic hypotension. Circulation 62: 329–340.

    Google Scholar 

  26. Guazzi M, Giorentini C, Olivari MT, Polase A (1979): Cardiac load and function in hypertension, ultrasonic and hemodynamic study. Am J Cardiol 44: 1007–1021.

    Article  PubMed  CAS  Google Scholar 

  27. Suga H, Ryuichi H, Goto Y, Yamoda O, Igarashi Y (1983): Effect of positive isotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res 53: 306–318.

    PubMed  CAS  Google Scholar 

  28. Burkhoff D, Yue D, Frantz M, Oikawa R, Schaefer J, Sagawa K (1985): Influence of contractile state on myocardial oxygen consumption. Circulation 72 (Suppl III) 298.

    Google Scholar 

  29. Beyar R, Sideman S (1986): The source parameters of the left ventricle related to the physiological characteristics of cardiac muscle. Biophys J 49: 1185–1194.

    Article  PubMed  CAS  Google Scholar 

  30. Shroff SG, Janicki JS, Weber KT (1983): Left ventricular systolic dynamics in terms of its chamber mechanical properties, Am J Physiol 245 (Heart Circ Physiol): H110-H124.

    PubMed  CAS  Google Scholar 

  31. Lund DD, Twietmeyer TA, Schmid PG, Tomanek RJ (1979): Independent changes in cardiac muscle fibers and connective tissue in rats with spontaneous hypertension, aortic constriction, and hypoxia. Cardiovasc Res 13: 44–49.

    Article  Google Scholar 

  32. Caspari PG, Necomb M, Gibbson K, Harris P (1977): Collagen content in the normal and hypertrophied human ventricle. Cardiovasc Res. 554–558.

    Google Scholar 

  33. Buccino RA, Harris E, Spann JR Jr, Sonnenblick EH (1969): Response of myocardial connective tissue to development of experimental hypertrophy. Am J Physiol 216: 425–428.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Beyar, R., Sideman, S. (1987). Concentric left ventricular hypertrophy: a simulation study of mechanics related to transmural oxygen demand and perfusion. In: Sideman, S., Beyar, R. (eds) Activation, Metabolism and Perfusion of the Heart. Developments in Cardiovascular Medicine, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3313-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3313-2_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7987-7

  • Online ISBN: 978-94-009-3313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics