Skip to main content

Parasympathetic control of the SA node cell in rabbit heart — a model

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 70))

Abstract

A mathematical model of the sinoatrial (SA) node cell based on the modeling studies of Di Francesco and Noble [1] for the Purkinje fiber, and Noble and Noble [2] for the rabbit SA node, is developed along with models of the utilization of the autonomic neurotransmitters acetylcholine and norepinephrine by elements of the cell membrane. Studies of the phase-sensitivity for the SA node cell model to vagal burst stimulation are conducted, with and without a constant background level of norepinephrine. The results reported are of a preliminary nature, but they mimic published data regarding the free-running behavior of the primary cells of the SA node as well as, their response to phasic vagal burst stimuli.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Di Francesco D, Noble D (1985): A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil Trans Roy Soc B 307: 353–398.

    Article  Google Scholar 

  2. Noble D, Noble S (1984): A model of S. A. node electrical activity using a modification of the Di Francesco-Noble (1984) equations. Proc Roy Soc B 222: 295–304.

    Article  CAS  Google Scholar 

  3. Hodgkin AL, Huxley AF (1952): A quantitative description of membrane current and its application to conduction and excitation. J Physiol (London) 117: 500–554.

    CAS  Google Scholar 

  4. Noble D (1962): A modification of the Hodgkin-Huxley equations applicable to Purkinje fiber action and pacemaker potentials. J Physiol (London) 160: 317–352.

    CAS  Google Scholar 

  5. McAllister RE, Noble D, Tsien RW (1975): Reconstruction of the electrical activity of cardiac Purkinje fibers. J Physiol (London) 251: 1–59.

    CAS  Google Scholar 

  6. Noble D (1979): The initiation of the heartbeat (2nd ed.). Clarendon, Oxford.

    Google Scholar 

  7. Coraboeuf E (1982): Ionic basis of electrical activity in cardiac tissue. In: Levy MN, Vassalle M (eds) Excitation and neural control of the heart. American Physiological Society, Bethesda, Md, pp. 1–35.

    Google Scholar 

  8. Beeler WG, Reuter H (1977): Reconstruction of the action potential of ventricular myocardial fibers. J Physiol (London) 268: 177–210.

    CAS  Google Scholar 

  9. Bristow DG, Clark JW (1982): A mathematical model of the primary pacemaking cell in the SA node of the heart. Amer J Physiol 243: H207-H218.

    PubMed  CAS  Google Scholar 

  10. Bristow DG, Clark JW (1983): A mathematical model of the vagally driven primary pacemaker. Amer J Physiol 244: H150-H161.

    PubMed  CAS  Google Scholar 

  11. Lee KS, Week TA, Kao RI, Eaikee NA, Brown AM (1979): Sodium current in single heart muscle cells. Nature (London) 278: 269–271.

    Article  CAS  Google Scholar 

  12. Hume JR, Giles W (1981): Active and passive electrical properties of single bullfrog atrial cells. J Gen Physiol 78: 19–42.

    Article  PubMed  CAS  Google Scholar 

  13. Hume JR, Giles W (1983): Ionic currents in single isolated bullfrog atrial cells. J Gen Physiol 81: 153–194.

    Article  PubMed  CAS  Google Scholar 

  14. Taniguchi J, Shinichiro K, Noma A, Irisawa H (1981): Spontaneously active cells isolated from the sino-atrial and atrio-ventricular nodes in the rabbit heart. Jpn J Physiol 31: 547–558.

    Article  PubMed  CAS  Google Scholar 

  15. Sheets MF, January CT, Fozzard HA (1983): Isolation and characterization of single canine cardiac Purkinje cells. J Physiol (London) 53: 544–548.

    CAS  Google Scholar 

  16. Noma A, Kotake H, Irisawa H (1980): Slow inward current and its role mediating the chronotropic effect of epinephrine in the rabbit sinoatrial node. Pflügers Archiv 388: 1–9.

    Article  PubMed  CAS  Google Scholar 

  17. Osterrieder W, Noma A, Trautwein W (1980): On the kinetics of the potassium channel activated by acetylcholine in the SA node of the rabbit heart. Pflugers Archiv 386: 101–109.

    Article  PubMed  CAS  Google Scholar 

  18. Garnier D, Nargeot J, Ojeda C, Rougier O (1978): The action of acetylcholine on background and conductance in frog atrial trabeculae. J Physiol (London) 174: 381–396.

    Google Scholar 

  19. Mubagwa K, Carmeliet E (1983): Effects of acetylcholine on electrophysiological properties of rabbit Purkinje fibers. Circ Res 53: 740–751.

    PubMed  CAS  Google Scholar 

  20. Kass RS, Wiegers SE (1982): The ionic basis of concentration-related effects of noradrenaline on the action potential of calf Purkinje fibers. J Physiol (London) 322: 541–558.

    CAS  Google Scholar 

  21. Noma A, Trautwein W (1978): Relaxation of the ACh-induced potassium current of the rabbit sinoatrial node. Pflügers Archiv 377: 193–200.

    Article  PubMed  CAS  Google Scholar 

  22. Brown H, Di Francesco D (1980): Voltage-clamp investigations of membrane currents underlying pace-maker activity in the rabbit sino-atrial node. J Physiol (London) 308: 331–351.

    CAS  Google Scholar 

  23. Rush S, Larsen H (1978): A practical algorithm for solving dynamic membrane equations. IEEE Trans on BME 25: 389–393.

    Article  CAS  Google Scholar 

  24. Lance GN (1960): Numerical methods for high speed computers. Iliffe and Sons, London.

    Google Scholar 

  25. Ashcroft FM, Stanfield PR (1980): Calcium dependence on the inactivation of calcium currents in skeletal muscle fibers of the insect. Science 213: 224–226.

    Article  Google Scholar 

  26. Fischmeister R, Mentrard D, Vassort G (1981): Slow inward current ionactivation in frog heart atrium. J Physiol (London) 320: 27P-28P.

    Google Scholar 

  27. Marban E, Tsien RW (1981): Is the slow inward current of heart muscle inactivated by calcium? Biophysiol J 33: 143 (Abstract).

    Google Scholar 

  28. Tsien RW, Marban E (1982): Digitalis and slow inward current in heart muscle: evidence for regulatory effects of intracellular calcium on calcium channels. In: Hagihara Y, Ebashis (eds) Advances in pharmacology and theraputics II, Vol. 3 Cardio-renal and cell pharmacology. Pergamon Press, Oxford, pp. 217–215.

    Google Scholar 

  29. Jalife J, Moe GK (1980): Phase effects of vagal stimulation on pacemaker activity of the isolated sinus node of the young cat. M Res 45: 595–608.

    Google Scholar 

  30. Brown GL, Eccles JC (1934): The action of a single vagal volley on the rhythm of the heart beat. J Physiol (London) 82: 211–240.

    CAS  Google Scholar 

  31. Stuesse SL, Wallick DW, Zeiske H, Levy MN (1981): Changes in vagal phasic chronotropic responses with sympathetic stimulation in the dog. Amer. J Physiol 241: H850-H856.

    CAS  Google Scholar 

  32. Yanigahara K, Noma A, Irisawa H (1980): Reconstruction of sinoatrial node pacemaker potential based on the voltage clamp experiments. Jpn J Physiol 30: 841–857.

    Article  Google Scholar 

  33. Michaels DC, Matayas EP, Jalife J (1984): A mathematical model of the vagal control of sinoatrial pacemaker activity. Circ Res 55: 89–101.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Murphey, C.R., Clark, J.W. (1987). Parasympathetic control of the SA node cell in rabbit heart — a model. In: Sideman, S., Beyar, R. (eds) Activation, Metabolism and Perfusion of the Heart. Developments in Cardiovascular Medicine, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3313-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3313-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7987-7

  • Online ISBN: 978-94-009-3313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics