Skip to main content

Cardiac energetics

  • Chapter
Mechanics of the Circulation

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 69))

Abstract

In this chapter I wish to consider the energy balance sheet for cardiac muscle and to discuss some of the uncertainties that exist in current measurements. Many of the problems I will highlight are not specific to cardiac muscle and certainly exist to varying degrees in skeletal and smooth muscle studies. I will be mainly concerned with results coming from my own laboratory and for that reason would like to acknowledge the debt that I owe to my colleagues and in particular to Dr. Brian Chapman, Dr. Denis Loiselle, Dr. Igor Wendt and Mr. George Kotsanas. I will be reporting energetic data obtained in myothermic and polarographic studies on papillary muscles together with some whole heart oxygen consumption data and will compare our results with those of other investigators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibbs, C.L.: Cardiac energetics. Physiol. Rev. 58: 174–254,1978.

    PubMed  CAS  Google Scholar 

  2. Gibbs, C.L. and Chapman, L.B.:Cardiac energetics. In: Handbook of Physiology. The Cardiovascular System I., pp 775–804, Berne, R.M., N. Sperelakis, and S.R. Geiger (Eds.) American Physiological Society, Bethesda, Md, 1979.

    Google Scholar 

  3. . Chapman, J.B: Heat production. In: Cardiac metabolism pp 239–256, Drake-Holland, A.J. & Noble, M.I.M. (Eds), Wiley, 1983.

    Google Scholar 

  4. Jacobus, W.E., and Lehninger, A.L.: Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J. Biol. Chem. 248, 4803–4810,1973.

    PubMed  CAS  Google Scholar 

  5. Curtin, N.A. and Woledge, R.C: Energy changes and muscular contraction Physiol. Rev. 58: 690–761, 1978.

    CAS  Google Scholar 

  6. Homsher, E. and Kean, C. J.: Skeletal muscle energetics and metabolism. Ann. Rev. Physiol. 40: 93–131,1978.

    Article  CAS  Google Scholar 

  7. Hill, A.V. Trails and Trials in Physiology. London Arnold, 1965.

    Google Scholar 

  8. Hartree, W. and Hill, A.V.: The recovery heat production of muscle. J. Physiol. Lond. 56: 367–381, 1922.

    PubMed  CAS  Google Scholar 

  9. Chapman, J.B. and Gibbs, C.L.:The effect of metabolic substrate on mechanical activity and heat production in papillary muscle. Cardiovasc. Res. 8: 656–667,1974.

    Article  PubMed  CAS  Google Scholar 

  10. Alpert, N. R. and Mulieri, L. A.: Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in rabbit. A characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ. Res. 50: 491–500.

    Google Scholar 

  11. Holubarsch, Ch., Alpert, N.R., Goulette, R. and Mulieri, L. A.: Heat production during hypox-fcic contracture of rat myocardium. Circ. Res. 51: 777–786,1982.

    PubMed  CAS  Google Scholar 

  12. Gibbs, C.L.: The energy output of normal and anoxic cardiac muscle. In: Comparative Physiology of the Heart: Current Trends, pp 78–92, McCann, F.V. (Ed.) Birkhauser Verlag, Basel, 1969.

    Google Scholar 

  13. Lochner, W., Arnold, G. and Muller-Ruchholtz, E.R.: Metabolism of the artificially arrested and gas-perfused heart. Am. J. Cardiol. 22, 299–311,1968.

    Article  PubMed  CAS  Google Scholar 

  14. Gibbs, C.L.:Thermodynamics and cardiac energetics. In: Microvascular, rheological, metabolic and heat transfer aspects of the heart: relation to ischemia and thrombosis, p 259–270.

    Google Scholar 

  15. Chapman, J.B.: Fluorometric studies of oxidative metabolism in isolated papillary muscle of the rabbit. J. Gen. Physiol. 59: 135–154,1972.

    Article  PubMed  CAS  Google Scholar 

  16. Loiselle, D.S. and Gibbs, C.L.: Factors affecting the metabolism of resting rabbit papillary muscle. Pflugers Arch. 396: 285–291,1983.

    Article  PubMed  CAS  Google Scholar 

  17. Gibbs, C.L., Papadoyannis, D.E., Drake, A.J. and Noble, M.I.M.: Oxygen consumption of the nonworking and potassium chloride-arrested dog heart. Circ. Res. 47: 408–417,1980.

    PubMed  CAS  Google Scholar 

  18. Loiselle, D.S.: The rate of resting heat production of rat papillary muscle. Pflugers Arch. 405: 155–162, 1985a.

    Article  PubMed  CAS  Google Scholar 

  19. Penpargkul, S. and Scheuer, J.:Metabolic comparisons between hearts arrested by calcium deprivation or potassium excess. Am. J. Physiol. 217:1405–1412,1969.

    CAS  Google Scholar 

  20. Bretschneider, H.J., Hubner, G., Knoll, D., Lohr, B., Nordbeck, H. and Spieckermann, P.G.: Myocardial resistance and tolerance to ischemia:physiological and biochemical basis. J. Cardiovasc. Surg.16: 241–260,1975.

    CAS  Google Scholar 

  21. Gibbs, C, Mommaerts, W.F.H.M. and Ricchiuti, N.V.: Energetics of cardiac contractions. J. Physiol. 191, 25–46,1967.

    PubMed  CAS  Google Scholar 

  22. Kotsanas, G. and Gibbs, C.L.:Factors regulating basal metabolism of the isolated perfused rabbit heart. Am. J. Physiol. (In press) 1986.

    Google Scholar 

  23. Penpargkul, S. and Scheuer, J.: Metabolic comparisons between hearts arrested by calcium deprivation or potassium excess. Am. J. Physiol. 217:1405–1412,1969.

    CAS  Google Scholar 

  24. Bergmann, S.R., Clark, R.E. and Sobel, B.F.: An improved isolated heart preparation for external assessment of myocardial metabolism. Am. J. Physiol. 236: H644–H651,1979.

    PubMed  CAS  Google Scholar 

  25. Schreiber, S.S., Hearse, D.J., Oratz, M. and Rothschild, M.A.: Protein synthesis in prolonged cardiac arrest. J. Molec. Cell. Cardiol. 9: 87–100,1977.

    Article  CAS  Google Scholar 

  26. Challoner, D.R.:Respiration in myocardium. Nature XV 217, 78–79,1968.

    Article  Google Scholar 

  27. Scrutton, M.C and Utter, M.F.: The regulation of glycolysis and gluconeogenesis in animal tissues. Ann. Rev. Biochem. 37: 249–302, 1968.

    Article  CAS  Google Scholar 

  28. Kort, A.A. and Lakatta, E.G.: Calcium-dependent mechanical oscillations occur spontaneously in unstimulated mammalian cardiac tissues. Circ. Res. 54: 396–404,1984.

    PubMed  CAS  Google Scholar 

  29. Chapman, J.B., Gibbs, C.L., and Gi Wbson, W.R.:Effects of calcium and sodium on cardiac contractility and heat production in rabbit papillary muscle. Circ. Res. 27: 601–610.

    Google Scholar 

  30. Hill, A. V.: The heat of activation and the heat of shortening in a muscle twitch. Proc. Roy. Soc. Lond. B 136: 195–211,1949.

    Article  CAS  Google Scholar 

  31. Gibbs, C.L. and Vaughan, P.: The effect of calcium depletion upon the tension-independent component of cardiac heat production. J. Gen. Physiol. 52: 532–549,1968.

    Article  PubMed  CAS  Google Scholar 

  32. Gibbs, C.L.: Modification of the physiological determinants of cardiac energy expenditure by pharmacological agents. Pharmacology and Therapeutics 18:133–152,1982.

    Article  PubMed  CAS  Google Scholar 

  33. Hill, A. V.: The variation of total heat production in a twitch with velocity of shortening. Proc. Roy. Soc. Lond. B 159: 596–605,1964b.

    Article  CAS  Google Scholar 

  34. Jewell, B.R.: A re-examination of the influence of muscle length on myocardial performance. Circ. Res. 40: 221–230,1977.

    PubMed  CAS  Google Scholar 

  35. Stephenson, D.G. and Wendt, I.R.: Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres. J. Muscle Res. Cell Motil. 5: 243–272,1984.

    Article  PubMed  CAS  Google Scholar 

  36. Allen, D. G. and Kentish, J. C.:The cellular basis of the length-tension relation in cardiac muscle. J. Molec. Cell. Cardiol. 17: 821–840,1985.

    Article  CAS  Google Scholar 

  37. Mulieri, L.A. and Alpert, N.R.: Activation heat and latency relaxation in relation to calcium movement in skeletal and cardiac muscle. Can. J. Physiol. Pharmacol. 60: 529–541,1982.

    Article  PubMed  CAS  Google Scholar 

  38. Gibbs, C. L.: Effects of ergometer releases on the energy output of rabbit papillary muscles. Proc. Aust. Physiol. Pharmacol. Soc. 16: 183P, 1985.

    Google Scholar 

  39. Cooper, G.: Myocardial energetics during isometric twitch contractions of cat papillary muscles. Am. J. Physiol. 23: H244–H253,1979.

    Google Scholar 

  40. Pierce, G.N., Philipson, K.D. and Langer, G.A.: Passive calcium-buffering capacity of a rabbit ventricular homogenate preparation. Am. J. Physiol. 249: C248–C255,1985.

    PubMed  CAS  Google Scholar 

  41. Hill, A. V.:The series elastic component of muscle. Proc. Roy. Soc. Lond. B137: 273–280,1950.

    Article  Google Scholar 

  42. Monroe, R.G.: Myocardial oxygen consumption during ventricular contraction and relaxation. Circ. Res. 14: 294–300,1964.

    PubMed  CAS  Google Scholar 

  43. McDonald, R.H.: Developed tension: a major determinant of myocardial oxygen consumption. Am. J. Physiol 210: 251–256,1966.

    Google Scholar 

  44. Gibbs, C.L. and Gibson, W.R.: Effect of alterations in the stimulus rate upon energy output, tension development and tension time integral of cardiac muscle in rabbits. Circ. Res. 27:611–618, 1970a.

    PubMed  CAS  Google Scholar 

  45. Gibbs, C.L. and Gibson, W.R.: Energy production in cardiac isotonic contractions, J. Gen. Physiol. 56: 732–750,1970b.

    Article  PubMed  CAS  Google Scholar 

  46. Delbridge, L.M. and Loiselle, D.S.: An ultrastructural investigation into the size dependency of contractility of isolated cardiac muscle. Cardiovasc. Res. 15: 21–27,1981.

    Article  PubMed  CAS  Google Scholar 

  47. Loiselle, D.S.: Stretch-induced increase in resting metabolism of isolated papillary muscle. Biophys. J. 38: 185–195,1982.

    Article  PubMed  CAS  Google Scholar 

  48. Sarnoff, S.J., Braunwald, E., Welch, G.H., Case, R.B., Stainsby, W.N. and Macruz, R.: Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am. J. Physiol. 192: 148–156,1958.

    PubMed  CAS  Google Scholar 

  49. Coleman, H.N.: Effect of alterations in shortening and external work on oxygen consumption of cat papillary muscle. Am. J. Physiol. 214: 100–106,1968.

    PubMed  CAS  Google Scholar 

  50. Coleman, H.N., Sonnenblick, E.H. and Braunwald, E.: Myocardial oxygen consumption associated with external work: The Fenn effect. Am. J. Physiol. 217: 291–296,1969.

    PubMed  CAS  Google Scholar 

  51. Mommaerts, W.F.H.M.: Energetics of muscular contraction. Physiol. Rev. 49: 427–508,1969.

    PubMed  CAS  Google Scholar 

  52. Elzinga, G. and Westerhof, N.: Pump function and the feline left heart: changes with heart rate and its bearing on the energy balance. Cardiovasc Res. 14: 81–92,1980.

    Article  PubMed  CAS  Google Scholar 

  53. Rail, J.A.: Sense and nonsense about the Fenn effect. Am. J. Physiol. 242: H1–H6,1982.

    Google Scholar 

  54. Suga, H., Sagawa, K. and Shoukas, A.A.: Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32: 314–322,1973.

    PubMed  CAS  Google Scholar 

  55. Sunagawa, K. and Sagawa, K.: Models of ventricular contraction based on time-varying elas-tance. CRC Crit. Rev. Biomed. Eng. 7: 193–228,1982.

    CAS  Google Scholar 

  56. Suga, H., Hayashi, T. and Shirahata, M.: Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am. J. Physiol., 240 (Heart Circ. Physiol. 9): H30–H44,1981.

    Google Scholar 

  57. Suga, H., Hisano, R., Goto, Y., Yamada, O. and Igashari, Y.: Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ. Res. 53: 306–318,1983.

    PubMed  CAS  Google Scholar 

  58. Gibbs, C.L. and Chapman, J.B.: The effect of stimulus conditions and temperature upon the energy output of frog and toad sartorii. Am. J. Physiol. 227: 964–971,1974.

    PubMed  CAS  Google Scholar 

  59. Woledge, R.C: The energetics of tortoise muscle. J. Physiol. (London) 197: 685–707.

    Google Scholar 

  60. Gibbs, C. L. and Chapman, J. B.: Cardiac mechanics and energetics: chemomechanical transduction in cardiac muscle. Am. J. Physiol. 249: H199–H206,1985.

    PubMed  CAS  Google Scholar 

  61. Huxley, A.F.: Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7: 255–318, 1957.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

H. E. D. J. Ter Keurs MD, PhD J. V. Tyberg MD, PhD

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Gibbs, C.L. (1987). Cardiac energetics. In: Ter Keurs, H.E.D.J., Tyberg, J.V. (eds) Mechanics of the Circulation. Developments in Cardiovascular Medicine, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3311-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3311-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7986-0

  • Online ISBN: 978-94-009-3311-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics