Skip to main content

Part of the book series: Developments in Oncology ((DION,volume 50))

  • 50 Accesses

Abstract

The introduction of immunocytochemical techniques in diagnostic histopathology has been of major importance for the recognition and characterization of endocrine tumors. Although previously applied morphological light - and electron microscopical methods permitted the identification of endocrine (neurosecretory) granules in tumors derived from endocrine and non-endocrine tissues, the results of these studies have often given rise to controversy about the relationship between structure and function of neoplastic endocrine cells. With the application of immunocytochemistry the confusion concerning the functional classification of endocrine tumors has been eliminated almost completely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hattori M, Fucase M, Yoshimi H: Ectopic production of human chorionic gonadotropin in malignant tumors. Cancer 42: 2328–2333, 1978.

    Article  PubMed  CAS  Google Scholar 

  2. Yoshimoto Y, Wolfsen AR, Odell WD: Glycosylation, a variable in the production of hCG by cancers. Am J Med 67: 414–420, 1979.

    Article  PubMed  CAS  Google Scholar 

  3. Rodenburg CJ, Nieuwenhuijzen Kruseman AC, de Maaker HA, Fieuren GJ, van Oosterom AD: Immunocytochemical localization and chromatografic characterization of human chorionic gonadotrophin in a bladder carcinoma. Arch Pathol Lab Med 109: 1046–1048, 1985.

    PubMed  CAS  Google Scholar 

  4. Asa SL, Kovacs K, Killinger DW, Marcon N, Platts M: Pancreatic islet cell carcinoma producing gastrins, ACTH, β-endorphine, somatostatin and calcitonin. Am J Gastroentrology 74: 30–35, 1980.

    CAS  Google Scholar 

  5. Heitz PU, Karper M, Polak JM, Kloppel S: Pancreatic endocrine tumors: immunocytochemical analysis of 125 tumors. Human Pathology 13: 263–271, 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Nieuwenhuijzen Kruseman AC: Application of ELISA for assessment of antiserum immunoreactivity in endocrine immunocytochemical studies. J Clin Pathology 36: 406–410, 1983.

    Article  Google Scholar 

  7. Bock E, Dissing J: Demonstration of enolase activity connected to the brain specific protein 14-3-2. Scand J Immunology 4 (suppl 2): 31–36, 1975.

    Article  Google Scholar 

  8. Schmechel D, Marangos PJ, Brightman M: Neuron-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature 276: 834–836, 1978.

    Article  PubMed  CAS  Google Scholar 

  9. Tapia FJ, Polak JM, Barbosa AJA, Bloem SR, Marangos PJ, Dermody C, Pearse AGE. Neuron-specific enolase is produced by neuroendocrine tumors. Lancet i: 808–811, 1981.

    Article  Google Scholar 

  10. Wick MR; Scheithauer BW, Kovacs K: Neuron-specific enolase in neuroendocrine tumors of the thymus, bronchus and skin. Am J Clin Pathology 29: 703–707, 1983.

    Google Scholar 

  11. Vinores SA, Bonnin JM, Rubenstein LJ, Marangos PJ: immuno- histochemical demonstration of neuron-specific enolase in neoplasms of the CNS and other tissues. Arch Pathol Lab Med 108: 536–540, 1984.

    PubMed  CAS  Google Scholar 

  12. Winkler H: The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience 1: 65–80, 1976.

    Article  PubMed  CAS  Google Scholar 

  13. Sharp RR, Richards EP: Molecular mobilities of soluble components in the acqueous phase of chromaffin granules. Biochem Biophys Acta 497: 260–271, 1977.

    Article  PubMed  CAS  Google Scholar 

  14. O’Connor DT, Burton D, Deftos LJ: Immunoreactive human chromogranin A in diverse polypeptide hormone producing human tumors and normal endocrine tissues. J Clin Endocrinol Met 57: 1084–1086, 1983.

    Article  Google Scholar 

  15. Lloyd RV, Wilson BS: Specific endocrine tissue markers defined by a monoclonal antibody. Science 222: 628–630, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Wilson BS; Lloyd RV: Detection of chromogranin in neuroendocrine cells with a monoclonal antibody. Am J Pathology 115: 458–465, 1984.

    CAS  Google Scholar 

  17. Kruggel W, O’Connor DT, Lewish RV: The amino terminal sequences of bovine and human chromogranin A and secretory protein I are identical. Biochem Biophys Res Commun 127: 380–383, 1985.

    Article  PubMed  CAS  Google Scholar 

  18. O’Connor DT, Deftos LJ: Secretion of chromogranin A by peptide- producing endocrine neoplasms. New Eng J Med 314: 1145–1151, 1986.

    Article  PubMed  Google Scholar 

  19. Osborn M, Weber K: Tumor diagnosis by intermediate filament- typing: a novel tool for surgical pathology. Lab Investigation 48: 372–3794, 1983.

    CAS  Google Scholar 

  20. Lehto VP, Stenman S, Miettinen M, Dahl D, Virtanen I: Expression of a neural typ of intermediate filament as a distinguishing feature between oatcell carcinoma and other lung cancers. Am J Pathology 110: 113–119, 1983.

    CAS  Google Scholar 

  21. Höfler H, Denk H, Walter GF: Immunohistochemica! demonstration of cytokeratins in endocrine cells of the human pituitary gland and in pituitary adenomas. Virchows Arch (Pathol Anat) 404: 359–368, 1984.

    Article  Google Scholar 

  22. Blobel CA, Gould VE, Moll R, Lee I, Huszar M, Geiger B, Franke WW: Coexpression of neuroendocrine markers and epithelial cytoskeletal proteins in bronchopulmonary neuroendocrine neoplasms. Lab Investigation 52: 39–51, 1985.

    CAS  Google Scholar 

  23. Van Muijen GNP, Ruiter DJ, van Leeuwen C, Prins FA, Rietsema C, Warnaar SV: Cytokeratin and neurofilament in lung carcinomas. Amer J Pathol 116: 363–369, 1984.

    Google Scholar 

  24. Höfler H, Kerl H, Lackinger E, Helleis G, Denk H: the intermediate filament cytoskeleton of cutaneous neuroendocrine carcinoma (Merkel cell tumor). Virchows Arch (Pathol Anat) 406: 339–350, 1985.

    Article  Google Scholar 

  25. Sappino AP, Mcllhinny RAJ, Ellison M, Monaghan P, Neville AM: A monoclonal antibody detecting neural and neuroendocrine differentiation. J Histochem Cytochemistry 32: 1041–1047, 1984.

    Article  CAS  Google Scholar 

  26. Nieuwenhuijzen Kruseman AC, Bosman FT, van Bergen Henegouw JC, Cramer-Knijnenburg G, Brutel de la Rivière G: Medullary differentiation of anaplastic thyroid carcinoma. Am J Clin Pathology 77: 541–547, 1982.

    CAS  Google Scholar 

  27. Ljungberg O, Bondeson L, Bondeson AG: Differentiated thyroid carcinoma, intermediate type. Hum Pathology 15: 218–228, 1984.

    Article  CAS  Google Scholar 

  28. Logmans SC, Jöbsis AC: Thyroid associated antigens in routinely embedded carcinomas. Cancer 54: 274–279, 1984.

    Article  PubMed  CAS  Google Scholar 

  29. Myskov MW, Krajewski AS, Dewar E, Millar ES, Mclaren K, Fabre JW. The role of immunoperoxidase techniques on paraffin embedded tissue in determining the histogenesis of undifferentiated thyroid neoplasms. Clin Endocrinology 24: 335–341, 1986.

    Article  Google Scholar 

  30. Taylor CR, Kurman RJ, Warner NE: The potential value of immunohistologic techniques in the classification of ovarium and testicular tumors. Hum Pathology 9: 417–427, 1978.

    Article  CAS  Google Scholar 

  31. Gaffney EF, Majmudar B, Hertzler GL, Zane R, Furlong B, Breding E: Ovarium granulosa cell tumors - immunohistochemical localization of estradiol and ultrastructure, with functional correlation. Obstet. Gynecology 61: 311–319, 1983.

    CAS  Google Scholar 

  32. Kovacs, K. Immunocytology of endocrine tumors. In: Immunocyto- chemistry in tumor diagnosis. Ed. Jose Russo. Martinus Nijhoff Publishing, Boston/Dordrecht/Lancaster, 183–201, 1985.

    Google Scholar 

  33. Miettinen M, Lehto VT, Virtanen: Expression of intermediate filaments in normal ovarium and ovarium epithelial, sex cord-stromal, and germinal tumors. Int J Gynecol Pathology 2: 64–71, 1983.

    Article  CAS  Google Scholar 

  34. Battifora H, Sheibani K, Tubbs RR, Kopinsk MI, Sun TT: Antikeratin antibodies in tumor diagnosis. Distinction between seminoma and embryonal carcinoma. Cancer 54: 843–848, 1984.

    Article  PubMed  CAS  Google Scholar 

  35. Nieuwenhuijzen Kruseman AC. Bots GThAM: The role of microscopic examination of pituitary tumors in clinical decision making. In: Trends in diagnosis and treatment of pituitary adenomas. Eds. SWJ Lamberts, FJH Tilders, EA van der Veen, J Assies. Free University Press Amsterdam, 389–400, 1984

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Kruseman, A.C.N. (1987). Endocrine Tumors.. In: Ruiter, D.J., Fleuren, G.J., Warnaar, S.O. (eds) Application of Monoclonal Antibodies in Tumor Pathology. Developments in Oncology, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3299-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3299-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7981-5

  • Online ISBN: 978-94-009-3299-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics