Advertisement

Animal models of cancer

  • S. A. Eccles
Part of the Cancer Biology and Medicine book series (CABM, volume 1)

Abstract

A common approach to the analysis of complex phenomena is to develop a model which parallels the salient features of the subject of investigation, but which is more amenable to experimental dissection and manipulation. The International Union against Cancer (UICC) recognises over 200 distinct neoplastic diseases1; individuals vary enormously in their susceptibility to different types of cancer, in the rate of progression of their diseases, and in their responses to treatment. In the case of animal models of cancer(s) in man, therefore, a fundamental problem lies in the sheer diversity of phenomena which we wish to understand.

Keywords

Bladder Cancer Phorbol Ester Tumour Promoter Mouse Skin Bovine Leukaemia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Union Against Cancer (1965). Illustrated Tumour Nomenclature. (Berlin: Springer-Verlag)Google Scholar
  2. 2.
    Doll, R. (1977). Strategy for detection of cancer hazards to man. Nature (London), 265, 589–596Google Scholar
  3. 3.
    Higginson, J. (1979). Environmental carcinogenesis: a global perspective. In Emmelot, P. and Kreik, E. (eds.) Environmental Carcinogenesis, pp. 9–24. (Amsterdam: Elsevier/North-Holland)Google Scholar
  4. 4.
    Doll, R. and Peto, R. (1981). The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl. Cancer Inst., 66, 1193–1308Google Scholar
  5. 5.
    Epstein, S. (1974). Environmental determinants of human cancer. Cancer Res., 34, 2425–2435PubMedGoogle Scholar
  6. 6.
    Peto, R. (1978). Epidemiology, multistage models and short-term mutagenicity tests. In Hiatt, H.H., Watson, J.D. and Winsten, J.A. (eds.) Origins of Human Cancer, pp. 1403–1428. (New York: Cold Spring Harbor)Google Scholar
  7. 7.
    Doll, R. and Peto, R. (1976). Mortality in relation to smoking: 20 years observations on male British doctors. Br. Med. J., 2, 1525–1536PubMedGoogle Scholar
  8. 8.
    Loeb, L. A., Ernster, V. L., Warner, K. E., Abbots, J. and Laszlo, J. (1984). Smoking and lung cancer: an overview. Cancer Res., 44, 5940–5958PubMedGoogle Scholar
  9. 9.
    Weinstein, I. B. (1981). The scientific basis for carcinogen detection and primary cancer prevention. Cancer, 47, 1133–1141PubMedGoogle Scholar
  10. 10.
    Ashby, J. (1983). The unique role of rodents in the detection of possible human carcinogens and mutagens. Mutat. Res., 115, 177–213PubMedGoogle Scholar
  11. 11.
    Ashby, J., De Serres, F. J., Draper, M., Ishidate, M., Margolin, B. H., Matter, B. E., and Shelby, M. D. (eds.) (1985). Evaluation of short-term tests for carcinogenesis. Prog. Mutat. Res. Vol. 5. (Amsterdam: Elsevier)Google Scholar
  12. 12.
    Salsburg, D. (1983). The lifetime feeding study in mice and rats — an examination of its validity as a bioassay for human carcinogens. Fundam. Appl. Toxicol., 3, 63–67PubMedGoogle Scholar
  13. 13.
    Hogan, M. D. (1983). Extrapolation of animal carcinogenicity data: limitations and pitfalls. Environ. Health Perspect., 47, 333–337PubMedGoogle Scholar
  14. 14.
    Tomatis, L. (1979). The predictive value of rodent carcinogenicity tests in the evaluation of human risks. Annu. Rev. Pharmacol. Toxicol., 19, 511–530PubMedGoogle Scholar
  15. 15.
    I ARC Monographs (on the evaluation of carcinogenic risk of chemicals to humans) (1971–1985). Nos. 1–20 (Lyon: I ARC)Google Scholar
  16. 16.
    Rail, D.P. (1979). Validity of extrapolation of results of animal studies to man. Ann. N. Y. Acad. Sci. USA, 329, 85–91Google Scholar
  17. 17.
    Kennaway, E. (1955). The identification of a carcinogenic compound in coal tar. Br. Med. J., 2, 749–752PubMedGoogle Scholar
  18. 18.
    Slaga, T. J., Fischer, S. M., Weeks, C. E. and Klein-Szanto, A. J. P. (1980). Multistage chemical carcinogenesis in mouse skin. Curr. Probl. Dermatol., 10, 193–218PubMedGoogle Scholar
  19. 19.
    Tobin, P. S., Kornhauser, A. and Schleuplein, R. J. (1982). An evaluation of skin painting studies as determinants of tumorigenesis potential following skin contact with carcinogens. Regul. Toxicol. Pharmacol, 2, 22–37PubMedGoogle Scholar
  20. 20.
    Boutwell, R. K., Verma, A. K. Ashendel, C. L. and Astrup, E. (1982). Mouse skin: a useful model system for studying the mechanism of chemical carcinogenesis. In Hecker, E., Fusenig, N. E., Kunz, W. and Marks, F. (eds.) Carcinogenesis. Vol. 7, pp. 1–12. (New York: Raven Press)Google Scholar
  21. 21.
    Berenblum, I. (1974). Carcinogenesis as a Biological Problem. (Amsterdam: Elsevier/North Holland)Google Scholar
  22. 22.
    Homburger, F. (ed) (1983). Skin painting techniques and in vivo carcinogenesis bioassays. Prog. Exp. Tumour Res., 26 Google Scholar
  23. 23.
    Hecker, E. (1967). Phorbol esters from croton oil: Chemical nature and biological activities. Naturwissenschaften, 11, 282–284Google Scholar
  24. 24.
    Hecker, E. (1981). Co-carcinogens and tumour promoters of the diterpene-ester type as possible carcinogenic risk factors. J. Cancer Res. Clin. Oncol, 99, 103–124PubMedGoogle Scholar
  25. 25.
    Wheldrake, J. F., Marshall, J., Ramli, J. and Murray, A. W. (1982). Skin carcinogenesis and promoter binding characteristics in different mouse strains. Carcinogenesis, 3, 805–807PubMedGoogle Scholar
  26. 26.
    Rail, D. P. (1977). Species differences in carcinogenesis testing. In Hiatt, H. H., Watson, J. D. and Winsten, J. A. (eds.) Origins of Human Cancer, pp. 1383–1390. (New York: Cold Spring Harbour)Google Scholar
  27. 27.
    Stenbach, F. (1980). Skin carcinogenesis as a model system: observations on species, strain and tissue sensitivity to 7, 12- dimethylbenz(a)anthracene with or without promotion from croton oil. Acta Pharmacol Toxicol, 46, 89–97Google Scholar
  28. 28.
    Bock, F. G. (1983). Comparative anatomy and function of skin as related to experimental chemical carcinogenesis. Prog. Exp. Tumor Res., 26, 5–17PubMedGoogle Scholar
  29. 29.
    Highland, J. (1983). The use of in vivo carcinogenesis bioassay data in the development of policies aimed at protecting public health. Prog. Exp. Tumor Res., 26, 292–300PubMedGoogle Scholar
  30. 30.
    Homburger, F. (1983). Introduction: carcinogenesis bioassay in historical perspective. Prog. Exp. Tumor Res., 26, 182–186PubMedGoogle Scholar
  31. 31.
    Dolan, W. D. (1983). The AMA’s position on carcinogenesis bioassays. Prog. Exp. Tumor Res., 26, 301–310PubMedGoogle Scholar
  32. 32.
    Selkirk, J. K., Macleod, M. C, Moore, C. J., Mansfield, B. K., Nikbakht, A. and Dearstone, K. (1982). Species variance in the metabolic activation of polycyclic hydrocarbons. In Harris, C. C. and Cerutti, P. A. (eds.) Mechanisms of Chemical Carcinogenesis, pp. 331–349. (New York: Alan R. Liss)Google Scholar
  33. 33.
    Merletti, F., Heseltine, E., Saracci, R., Simonata, L., Vainio, H. and Wilbourn, J. (1984). Target organs for carcinogenicity of chemicals and industrial exposure of humans: A review of results in the I ARC Monographs on the evaluation of carcinogenic risk of chemicals to humans. Cancer Res., 44, 2244–2250PubMedGoogle Scholar
  34. 34.
    Purchase, I. F. H. (1980). Interspecies comparisons of carcinogenicity. Br. J. Cancer, 41, 454–468PubMedGoogle Scholar
  35. 35.
    Mantel, N. and Schneiderman, M. A. (1975). Estimating “safe” levels, a hazardous undertaking. Cancer Res., 35, 1379–1386PubMedGoogle Scholar
  36. 36.
    Gehring, P. J. and Blau, G. E. (1979). Mechanisms of carcinogenesis: The dose response. Cancer Bull., 29, 152–161Google Scholar
  37. 37.
    Tomatis, L., Agthe, C., Bartsch, H., Huff, J., Montesanto, R., Saraci, R., Walker, E. and Wilbourne, E. (1978). Evaluation of the carcinogenicity of chemicals, a review of the monograph programme of the International Agency on Cancer (1971–1977). Cancer Res., 38, 877–885PubMedGoogle Scholar
  38. 38.
    Langenbach, R., Nesnow, S. and Rice, J. M. (eds.) (1983). Organ and species specificity in chemical carcinogenesis. Basic Life Sciences. Vol. 24. (New York: Plenum Press).Google Scholar
  39. 39.
    Clayson, D. B. (1977). Principles underlying testing of carcinogenicity. Cancer Bull., 29, 161–166Google Scholar
  40. 40.
    Miller, E. C. and Miller, J. A. (1976). The metabolism of chemical carcinogens to reactive electrophiles and their possible mechanisms of action in carcinogenesis. In Searle, C. E. (ed.) Chemical Carcinogens. ACS Monograph 173. pp. 737–762. (Washington, D.C.: American Chemical Society)Google Scholar
  41. 41.
    Miller, E. C., Miller, J. A. and Enomoto, M. (1964). The comparative carcinogenicities of 2 acetyl aminofluorene and its N-hydroxymetabolite in mice, hamsters and guinea pigs. Cancer Res., 24, 2018–2031PubMedGoogle Scholar
  42. 42.
    Peers, F. G., Gilman, G. A. and Linsell, C. A. (1976). Dietary aflatoxins and human liver cancer. Int. J. Cancer, 17, 167–176PubMedGoogle Scholar
  43. 43.
    Wogan, G. N. (1973). Aflatoxin carcinogenesis. Methods Cancer Res., 7, 309–344Google Scholar
  44. 44.
    Portier, C. J. and Hoel, D. G. (1984). Design of animal carcinogenicity studies for goodness-of-fit of multistage models. Fundam. Appl. Toxicol., 4, 949–959PubMedGoogle Scholar
  45. 45.
    Heidelberger, C. (1982). Relationship between carcinogenesis and transformation of cell cultures. In Harris, C.C. and Cerutti, P. A. (eds.) Mechanisms of Chemical Carcinogenesis. pp. 563–573. (New York: Alan Liss).Google Scholar
  46. 46.
    Pienta, R. J. (1980). Transformation of Syrian hamster embryo cells by diverse chemicals and correlation with their reported carcinogenic and mutagenic activities. In De Serres, F.F. and Hollaender, A. (eds.) Chemical Mutagens. Vol. VI, pp. 175–202. (New York: Plenum)Google Scholar
  47. 47.
    Ames, B. N. (1982). Mutagens, carcinogens and anti-carcinogens. Basic Life Sci., 21, 499–508PubMedGoogle Scholar
  48. 48.
    Parkinson, E. K., Pera, M. F., Emmerson, A. and Gorman, P. A. (1984). Differential effects of complete and second-stage tumour promoters in normal but not transformed human and mouse keratinocytes. Carcinogenesis, 5, 1071–1077PubMedGoogle Scholar
  49. 49.
    Okhawa, Y., Iwata, K., Shibuya, H., Fujiki, H. and Inui, N. (1984). A rapid simple screening method for skin tumor promoters using mouse peritoneal macrophages in vitro. Cancer Lett., 21, 253–260Google Scholar
  50. 50.
    Bohrman, J. S. (1983). Identification and assessment of tumour-promoting and co- carcinogenic agents: state-of-the-art in vitro methods. CRC Crit. Rev. Toxicol., 11,121–167Google Scholar
  51. 51.
    Farber, E. (1984). The multistep nature of cancer development. Cancer Res., 44,4217–4223PubMedGoogle Scholar
  52. 52.
    Farber, E. (1984). Cellular biochemistry of the stepwise development of cancer with chemicals. Cancer Res., 44, 5463–5474PubMedGoogle Scholar
  53. 53.
    Shubik, P. (1984). Progression and promotion. J. Natl. Cancer Inst., 5, 1005–1011Google Scholar
  54. 54.
    Sivak, A. (1982). An evaluation of assay procedures for detection of tumour promoters. Mutat. Res., 98, 377–387PubMedGoogle Scholar
  55. 55.
    Garner, H., Schor, S. and Kinsella, A. R. (1984). Susceptibility of skin fibroblasts from individuals genetically predisposed to cancer to transformation by the tumour promoter 12–0-tetradecanoylphorbol-13-acetate. Int. J. Cancer, 34, 349–357Google Scholar
  56. 56.
    Trosko, J. E., Jone, C. and Chang, C. C. (1984). The use of in vitro assays to study and to detect tumour promoters. In Borzsonyi, M., Day, N. E., Lapis, K. and Yamasaki, H. (eds.) Models Mechanisms and Etiology of Tumour Promotion. IARC Publications. No. 56, pp. 239–252. (Lyon: IARC)Google Scholar
  57. 57.
    Weinstein, I. B., Yamasaki, H., Wigler, M., Lee, L. S., Fisher, P. B., Jeffrey, A. Grunberger, D. (1979). Molecular and cellular events associated with the action of initiating carcinogens and tumour promoters. In Griffin, A. C. and Shaw, C. R. (eds.) Carcinogens: Identification and Mechanisms of Action, pp. 399–418. (New York: Raven Press)Google Scholar
  58. 58.
    Brookes, P. and Lawley, P. D. (1964). Evidence for the binding of polynuclear aromatic hydrocarbons to the nucleic acids of mouse skin. Relation between carcinogenic power of hydrocarbons and their binding to deoxyribonucleic acid. Nature (London), 202, 781–784Google Scholar
  59. 59.
    Harvey, R. G. (1982). Polycyclic hydrocarbons and cancer. Am. Sci., 70, 386–392PubMedGoogle Scholar
  60. 60.
    Weinstein, I. B. (1981). Current concepts and controversies in chemical carcinogenesis. J. Supramol. Struct. Cell. Biochem., 17, 99–120PubMedGoogle Scholar
  61. 61.
    Weinstein, I. B., Horowitz, A., Jeffrey, A. and Ivanovic, V. (1983). Cellular events in multistage carcinogenesis. In Weinstein, I. B. and Vogel, H. J. (eds.) Genes and Proteins in Oncogenesis, pp. 99–110. (New York: Academic Press)Google Scholar
  62. 62.
    Cairns, J. (1981). The origin of human cancers. Nature (London), 289, 353–357Google Scholar
  63. 63.
    Slaga, T. J. (1983). Overview of tumor promotion in animals. Environ. Health Perspect., 50, 3–14PubMedGoogle Scholar
  64. 64.
    Slaga, T. J., Fischer, S. M., Weeks, C. E., Nelson, K., Mamrack, M. and Klein-Szanto, A. J. P. (1982). Specificity and mechanism(s) of promoter inhibitors in multistage promotion. In Hecker, E., Fusenig, N. E., Kunz, W., Marks, F. and Thielmann, H. W. (eds.) Carcinogenesis’. A Comprehensive Survey. Vol. 7. Cocarcinogenesis and Biological Effects of Tumor Promoters, pp. 19–34. (New York: Raven Press).Google Scholar
  65. 65.
    Blumberg, P. M. (1981). In vitro studies on the mode of action of phorbol esters, potent tumour promoters. CRC Crit. Rev. Toxicol., 9, 199–234Google Scholar
  66. 66.
    Blumberg, P. M., Dunn, J. A., Jaken, S., Jeng, A. Y., Leach, K. L., Sharkey, N. A. and Yen, H. (1984). Specific receptors for phorbol ester tumour promoters and their involvement in biological responses. In Slaga, T. J. (ed.) Mechanisms of Tumour Promotion 3. Tumour Promotion and Co-carcinogenesis in vitro, pp. 143–184. (Boca Raton: CRC Press)Google Scholar
  67. 67.
    Horowitz, A., Fujiki, H., Weinstein, I. B., Jeffrey, A., Oken, E., Moore, R. E. and Sugimura, T. (1983). Comparative effects of aplysiatoxin, debromoaplysiatoxin and teleocidin on receptor binding and phospholipid metabolism. Cancer Res., 43, 1529–1535PubMedGoogle Scholar
  68. 68.
    Armuth, V. and Berenblum, I. (1974). Promotion of mammary carcinogenesis and leukaemogenic action by phorbol in virgin female Wistar rats. Cancer Res., 34, 2704–2707PubMedGoogle Scholar
  69. 69.
    Armuth, V. and Berenblum, I. (1972). Systemic promoting action of phorbol in liver and lung carcinogenesis in AKR mice. Cancer Res., 32, 2259–2262PubMedGoogle Scholar
  70. 70.
    Goerrtler, K., Loehrke, H., Schweizer, J. and Hesshe, B. (1979). Systemic 2-stage carcinogenesis in the epithelium of the forestomach of mice using 7, 12-dimethylbenz(a) anthracene as initiator and the phorbol ester 12–0-tetradecanoylphorbol-13-acetate as promoter. Cancer Res., 39, 1293–1297Google Scholar
  71. 71.
    Czuka, O., Szentirmay, Z. and Sugar, J. (1984). The effect of promoters on 1, 2 dimethylhydrazine-induced colon carcinogenesis. In Börzsönyi, M., Day, N. E., Lapis, K. and Yamasaki, H. (eds.) Models, Mechanisms and Etiology of Tumour Promotion. I ARC Publications. No. 56, pp. 129–136. (Lyon: IARC)Google Scholar
  72. 72.
    Hecker, E. (1984). Co-carcinogens of the tumour-promoter type as potential risk factors of cancer in man. In Börzönyi, M., Day, N. E., Lapis, K. and Yamasaki, H. (eds.) Models, Mechanisms and Etiology of Tumour Promotion. IARC Publications. No. 56, pp. 441–463. (Lyon: IARC)Google Scholar
  73. 73.
    Blumberg, P. M., Declos, K. B. and Jaken, S. (1981). Tissue and species specificity for phorbol ester receptors. In Langenbach, R., Nesnow, S. and Rice, J. M. (eds.) Organ and Species Specificity in Chemical Carcinogenesis, pp. 201–230. (New York: Plenum Press)Google Scholar
  74. 74.
    Horowitz, A. D., Greenbaum, E. and Weinstein, I. B. (1981). Identification of receptors for phorbol ester tumour promoters in intact mammalian cells and of an inhibitor of receptor binding in biologic fluids. Proc. Natl. Acad. Sci. USA, 78, 2315–2319PubMedGoogle Scholar
  75. 75.
    Neidel, J. E., Kuhn, L. J. and Vandenbark, G. R. (1983). Phorbol diester receptor copurifies with protein kinase C. Proc. Natl. Acad. Sci. USA, 80, 36–40Google Scholar
  76. 76.
    Ashendel, C. L., Staller, J. M. and Boutwell, R. K. (1983). Identification of a calcium- and phospholipid-dependent phorbol ester binding activity in the soluble fraction of mouse tissues. Biochem. Biophys. Res. Commun., 111, 340–345PubMedGoogle Scholar
  77. 77.
    Ponder, B. A. J. (1984). Clinical implications of current studies in carcinogenesis. J. Cancer Res. Clin. Oncol., 108, 264–273PubMedGoogle Scholar
  78. 78.
    Weinstein, I. B., Horowitz, A. D., Mufson, R. A., Fisher, P. B., Ivanovic, V. and Greenbaum, E. (1982). Results and speculations related to recent studies on mechanisms of tumour promotion. In Hecker, E., Fusenig, N. E., Kunz, W., Marks, F. and Thielmann, H. W. (eds.) Carcinogenesis. A Comprehensive Survey. Vol. 7. Cocarcinogenesis and Biological Effects of Tumour Promoters, pp. 599–616. (New York: Raven Press).Google Scholar
  79. 79.
    Frei, J. V. (1976). Some mechanisms operative in carcinogenesis: a review. Chem. Biol. Interact., 12, 1–25Google Scholar
  80. 80.
    Argyris, T. S., Slaga, T. J. (1981). Promotion of carcinomas by repeated abrasion in initiated skin of mice. Cancer Res., 4, 5193–5195Google Scholar
  81. 81.
    Coursaget, P., Maupas, P., Goudean, A., Chiron, J-P., Drucker, J., Denis, F., Diop-Mar, I. (1980). Primary hepatocellular carcinoma in intertropical Africa: relationship between age and hepatitis B virus etiology. J. Natl. Cancer Inst., 65, 687–690PubMedGoogle Scholar
  82. 82.
    Brand, K. G. (1979). Schistosomiasis-cancer. Etiological considerations. Acta Trop, 36, 203–214PubMedGoogle Scholar
  83. 83.
    Yager, J. D., Jager, R. (1980). Oral contraceptive steroids as promoters of hepatocarcino- genesis in female Sprague-Dawley rats. Cancer Res., 40, 3680–3685PubMedGoogle Scholar
  84. 84.
    Ryan, W. L., Stenback, F. and Curtis, G. L. (1981). Tumor promotion by foreign bodies (I.U.D.). Cancer Lett., 13, 299–302PubMedGoogle Scholar
  85. 85.
    Trosko, J. E., Chang, C., Medcalf, A. (1983). Mechanisms of tumour promotion: potential role of intercellular communication. Cancer Invest., 1, 511–526PubMedGoogle Scholar
  86. 86.
    Yamasaki, H. (1984). Modulation of cell differentiation by tumour promoters. In Slaga, T.J. (ed.) Mechanisms of Tumour Promotion. 4. Cellular Responses to Tumour Promoters. pp. 1–26. (Boca Raton: CRC Press)Google Scholar
  87. 87.
    Colburn, N. H., Srinivas, L., Hegamyer, G. A., Dion, L. D., Wendel, E. J., Cohen, M. and Gindhart, T. D. (1984). Role of specific membrane and genetic changes in the mechanism of tumour promotion. Studies with promoter-resistant variants. In Borzsonyi, M., Day, N. E., Lapis, K. and Yamasaki, H. (eds.) Models, Mechanisms and Etiology of Tumour Promotion. IARC Scientific Publications. No. 56 (Lyon: IARC)Google Scholar
  88. 88.
    Colburn, N. H., Talmadge, C. B. and Gindhart, T. D. (1983). Transfer of sensitivity to tumour promoters by transfection of DNA from sensitive into insensitive mouse JB6 epidermal cells. Mol. Cell. Biol., 3, 1182–1186PubMedGoogle Scholar
  89. 89.
    Peraino, C., Fry, R. J., Staffeldt, E. E. and Christopher, J. P. (1975). Comparative enhancing effects of phenobarbital, amobarbital, diphenylhydantoin and dichloro- diphenyltrichloroethane and 2-acetylaminofluorene-induced hepatic tumorigenesis in the rat. Cancer Res., 35, 2284–2289Google Scholar
  90. 90.
    Ito, N., Tatematsu, M., Imaida, K., Hasegawa, R., Murasaki, G. (1980). Effects of various promoters on the induction of hyperplastic nodules in rat liver. Gann, 71, 415–416PubMedGoogle Scholar
  91. 91.
    Scherer, E. and Emmelot, P. (1976). Kinetics of induction and growth of enzyme-deficient islands involved in hepatocarcinogenesis. Cancer Res., 36, 2544–2554PubMedGoogle Scholar
  92. 92.
    Becker, F. F. (1976). Sequential phenotypic and biochemical alterations during chemical hepatogenesis. Cancer Res., 36, 2563–2566PubMedGoogle Scholar
  93. 93.
    Solt, D. B. and Farber, E. (1976). New principle for the analysis of chemical carcinogenesis. Nature (London), 263, 702–703Google Scholar
  94. 94.
    Stevens, F. J. and Peraino, C. (1983). Liver as a model system for analysing mechanisms of tumour initiation and promotion. In Langenbach, R., Nesnow, S. and Rice, J.M. (eds.) Organ and Species Specificity in Chemical Carcinogenesis, pp. 231–252. (New York: Plenum Press)Google Scholar
  95. 95.
    Day, N. E. and Brown, C. C. (1980). Multistage models and primary prevention of cancer. J. Natl. Cancer Inst., 64, 977–989PubMedGoogle Scholar
  96. 96.
    Croy, R. G., Essigmann, J. M. and Wogan, G. N. (1983). Aflatoxin B,: correlations of patterns of metabolism and DNA modification with biological effects. In Langenbach, R., Nesnow, S. and Rice, J. M. (eds.) Organ and Species Specificity in Chemical Carcinogenesis, pp. 49–62. (New York: Plenum Press)Google Scholar
  97. 97.
    Booth, S. C., Bosenberg, H., Garner, R. C., Hertzog, P. J., and Norpoth, K. (1981). The activation of aflatoxin Bi in liver slices and in bacterial mutagenicity assays using livers from different species including man. Carcinogenesis, 2, 1063–1068PubMedGoogle Scholar
  98. 98.
    Okuda, K. and Mackay, I. (eds.) (1982). Hepatocellular carcinoma. (Geneva: UICC Technical Report series volume 74)Google Scholar
  99. 99.
    Ayoola, E. A. (1984). Synergism between HBV and aflatoxin in hepatocellular carcinoma. In Williams, A. O., O’Connor, G. T., De-the, G. B. and Johnson, C. A. (eds.) Virus- associated Cancers in Africa, pp. 167–179 (Lyon: IARC Scientific Publications no. 63)Google Scholar
  100. 100.
    Tsung-Tang, S. and Neng-Jin, W. (1983). Studies on human liver carcinogenesis. In Harris, C.C. and Autrup, H.N. (eds.) Human carcinogenesis, pp. 757–780. (New York: Academic Press)Google Scholar
  101. 101.
    Kuratsune, M., Kohchi, S., Horie, A. and Nishizumi, M. (1971). Test of alcohol beverages and ethanol solutions for carcinogenicity and tumour-promoting activity. Gann, 62, 395–405PubMedGoogle Scholar
  102. 102.
    Schwartz, ML, Appel, K. E., Schrenk, D. and Kunz, W. (1980). Effect of ethanol on microsomal metabolism of dimethylnitrosamine. J. Cancer Res. Clin. Oncol, 97, 233–240Google Scholar
  103. 103.
    Schwartz, M., Buchmann, A., Moore, M. and Kunz, W. (1984). The mechanism of co- carcinogenic action of ethanol in rat liver. In Börzsönyi, M., Day, N. E., Lapis, K. and Yamasaki, H. (eds.) Models, Mechanisms and Etiology of Tumour Promotion. IARC Scientific Publications. No. 56, pp. 83–92 (Lyon: IARC)Google Scholar
  104. 104.
    Hicks, R. M. (1980). Multistage carcinogenesis in the urinary bladder. Br. Med. Bull., 36, 39–46PubMedGoogle Scholar
  105. 105.
    Cohen, S. M., Hasegawa, R., Greenfield, R. and Ellwein, L. B. (1984). Urinary bladder carcinogenesis. In Börzsönyi, M., Day, N. E., Lapis, K. and Yamasaki, H. (eds.) Models, Mechanisms and Etiology of Tumour Promotion. IARC Scientific Publications. No. 56, pp. 93–108. (Lyon: IARC)Google Scholar
  106. 106.
    Hicks, R.M., Wakefield, J. and Chowaniec, J. (1975). Evaluation of a new model to detect bladder carcinogens or co-carcinogens. Results obtained with saccharin, cyclamate and cyclophosphamide. Chem. Biol Interact., 11, 225–233PubMedGoogle Scholar
  107. 107.
    Nakanishi, K., Fukushima, S., Shibata, M., Shirai, T., Ogiso, T. and Ito, N. (1978). Effect of phenacetin and caffeine on the urinary bladder of rats treated with N-butyl-N-(4- hydroxybutyl) nitrosamine. Gann, 69, 395PubMedGoogle Scholar
  108. 108.
    Matsushima, M. (1977). The role of the promoter L-tryptophan on tumorigenicity in the urinary bladder. 2. Urinary bladder carcinogenesis of FANFT (initiating factor) in mice. Jpn. J. Urol., 68,731–736Google Scholar
  109. 109.
    Radomski, J. L., Radomski, T. and McDonald, W. E. (1977). Cocarcinogenic interaction between D, L tryptophan and 4-aminobiphenyl or 2-naphthylamine in dogs. J. Natl Cancer Inst., 58, 1831–1834PubMedGoogle Scholar
  110. 110.
    Cohen, S. M. (1979). Urinary bladder carcinogenesis: initiation-promotion. Semin. Oncol, 6, 157–160PubMedGoogle Scholar
  111. 111.
    Littlefield, N. A., Greenman, D. L., Farmer, J. H. and Sheldon, W. G. (1980). Effects of continuous and discontinued exposure to 2-AAF on urinary bladder hyperplasia and neoplasia. J. Environ. Pathol Toxicol, 3, 35–53PubMedGoogle Scholar
  112. 112.
    Trosko, J. E., Dawson, B., Yotti, L. P. and Chang, C. C. (1980). Saccharin may act as a tumor promoter by inhibiting metabolic co-operation between cells. Nature (London), 285, 109–110Google Scholar
  113. 113.
    Hicks, R. M. (1982). Promotion in bladder cancer. In Hecker, E., Fusenig, N. E., Kunz, W., Marks, F. and Thielmann, H. W. (eds.) Carcinogenesis — a Comprehensive Survey. Vol. 7, pp. 139–153. (New York: Raven Press)Google Scholar
  114. 114.
    Price, J. M. (1971). Etiology of bladder cancer. In Maltry, E. (ed.) Benign and Malignant Tumours of Urinary Bladder, pp. 189–251. (New York: Medical Examination Publication Co.)Google Scholar
  115. 115.
    Cohen, S. M. (1983). Promotion of urinary bladder carcinogenesis. In Langenbach, R., Nesnow, S. and Rice, J. M. (eds.) Organ and Species Specificity in Chemical Carcinogenesis, pp. 253–270. (New York: Plenum Press)Google Scholar
  116. 116.
    Hicks, R. M. (1983). Effect of promoters on incidence of bladder cancer in experimental animal models. Environ. Health Per sped., 50, 37–49Google Scholar
  117. 117.
    Clayson, D. B. (1974). Bladder carcinogenesis in rats and mice: possibility of artefacts. J. Natl Cancer Inst., 52, 1685–1689PubMedGoogle Scholar
  118. 118.
    Van Duuren, B. L. and Goldschmidt, B. M. (1976). Co-carcinogens and tumour-promoting agents in tobacco carcinogenesis. J. Natl Cancer Inst., 56, 1237–1242PubMedGoogle Scholar
  119. 119.
    Witschi, H. P. (1983). Promotion of lung tumors in mice. Environ. Health Perspect., 50, 267–273PubMedGoogle Scholar
  120. 120.
    Slaga, T. J. (1984). Can tumour promotion be effectively inhibited? In Börzsönyi, M., Day, N. E., Lapis, K. and Yamasaki, H. (eds.) Models, Mechanisms and Etiology of Tumour Promotion. IARC Scientific Publications. No. 56, pp. 497–506. (Lyon: IARC)Google Scholar
  121. 121.
    Autrup, H., Grafstrom, R. C. and Harris, C. C. (1983). Metabolism of chemical carcinogens by tracheobronchial tissues. In Langenbach, R., Nesnow, S. and Rice, J. M. (eds.) Organ and Species Specificity in Chemical Carcinogenesis, pp. 473–492. (New York: Plenum Press)Google Scholar
  122. 122.
    Nettesheim, P., Barret, J. C., Mass, M. J., Steele, V. E. and Gray, T. E. (1984). Studies on the action of tumour promoters and antipromoters on respiratory tract epithelium. In Börzsönyi, M., Day, N. E., Lapis, K. and Yamasaki, H. (eds.) Models, Mechanisms and Etiology of Tumour Promotion. IARC Scientific Publications. No. 56, pp. 109–127. (Lyon: IARC)Google Scholar
  123. 123.
    Pollard, M. and Luckert, P. H. (1979). Promotional effect of sodium barbiturate on intestinal tumours induced in rats by dimethylhydrazine. J. Natl. Cancer Inst., 63, 1089–1092PubMedGoogle Scholar
  124. 124.
    Reddy, B. S., Weisburger, J. H. and Wynder, E. L. (1978). Colon cancer: bile salts as tumour promoters. In Slaga T.J., Sivak, A. and Boutwell, R.K. (eds.) Carcinogenesis: a Comprehensive Survey. Vol. 2, pp. 453–464. (New York: Raven Press)Google Scholar
  125. 125.
    Dao, T. L. and Chan, P. (1983). Hormones and dietary fat as promoters in mammary carcinogenesis. Environ. Health Perspect., 50, 219–225PubMedGoogle Scholar
  126. 126.
    Weisburger, J. H., Reddy, B. S., Barnes, W. S. and Wynder, E. L. (1983). Bile acids but not neutral sterols are tumor promoters in the colon in man and in rodents. Environ. Health Perspect., 50, 101–107PubMedGoogle Scholar
  127. 127.
    Bulbrook, R. D., Moore, J. W., Wang, D. Y. and Clark, G. M. G. (1984). Oestrogens and the etiology and clinical course of breast cancer. In Börzsönyi, M., Day, N. E., Lapis, K. and Yamasaki, H. (eds.) Models, Mechanisms and Etiology of Tumour Promotion. IARC Scientific Publications. No. 56, pp. 385–395. (Lyon: IARC)Google Scholar
  128. 128.
    Day, N. E. (1982). Epidemiological evidence of promoting effects — the example of breast cancer. In Hecker, E., Fusenig, N. E., Kunz, W., Marks, F. and Thielmann, H. W. (eds.) Carcinogenesis — a Comprehensive Survey Vol. 7, pp. 183–199. (New York: Raven Press)Google Scholar
  129. 129.
    Moolgavkar, S. H., Day, N. E. and Stevens, R. G. (1980). Two-stage model for carcinogenesis. Epidemiology of breast cancer in females. J. Natl. Cancer Inst., 65,559–569PubMedGoogle Scholar
  130. 130.
    Thomas, D. B. (1983). Factors that promote the development of human breast cancer. Environ. Health Perspect., 50, 209–218PubMedGoogle Scholar
  131. 131.
    Greenbaum, E. and Weinstein, I. B. (1981). Relevance of the concept of tumor promotion to the causation of human cancer. In Fenoglio, C. M. and Wolff, M. (eds.) Progress in Surgical Pathology, pp. 27–43. (New York: Masson)Google Scholar
  132. 132.
    Slaga, T. J. (1983). Host factors in the susceptibility of mice to tumour initiating and promoting agents. In Turusov, V. and Montesano, R. (eds.) Modulators of Experimental Carcinogenesis. IARC Scientific Publications. No. 51 (Lyon: IARC)Google Scholar
  133. 133.
    Wattenberg, L. W. (1985). Chemoprevention of cancer. Cancer Res., 45, 1–8PubMedGoogle Scholar
  134. 134.
    Wattenberg, L. W. (1980). Inhibitors of chemical carcinogenesis. J. Environ. Pathol. Toxicol., 3, 35–52PubMedGoogle Scholar
  135. 135.
    Graham, S., Dayai, H., Swanson, M., Mittleman, A. and Wilkinson, G. (1978). Diet in the epidemiology of cancer of the colon and rectum. J. Natl. Cancer Inst., 61, 709–714PubMedGoogle Scholar
  136. 136.
    Haenszel, W., Kurihara, M., Segi, M. and Lee, R. K. C. (1972). Stomach cancer among Japanese in Hawaii. J. Natl. Cancer Inst., 49, 969–988PubMedGoogle Scholar
  137. 137.
    Nomura, A., Slemmermann, G. N., Heilbrun, L. K., Salkeld, R. M. and Virilleumier, J. P. (1985). Serum Vitamin A levels and the risk of cancer of specific sites in men of Japanese ancestry in Hawaii. Cancer Res., 45, 2369–2372PubMedGoogle Scholar
  138. 138.
    Peto, R., Doll, R., Buckley, J.D. and Sporn, M.B. (1981). Can dietary beta-carotene materially reduce human cancer rates? Nature (London), 290, 201–208Google Scholar
  139. 139.
    Kummet, T., Moon, T. E., Meyskens, F. L. (1983). Vitamin A: Evidence for its preventive role in human cancer. Nutr. Cancer. 5, 96–106PubMedGoogle Scholar
  140. 140.
    Blunck, J. M. (1984). Modification of neoplastic processes by Vitamin A and retinoids. In Briggs, M.H. (ed.) Recent Vitamin Research, pp. 104–125. (Boca Raton: CRC Press Inc.)Google Scholar
  141. 141.
    Sporn, M. B. and Roberts, A. B. (1983). Role of retinoids in differentiation and carcinogenesis. Cancer Res., 43, 3034–3040PubMedGoogle Scholar
  142. 142.
    Bollag, W. and Hartmann, H. R. (1983). Prevention and therapy of cancer with retinoids in animals and man. Cancer Surv., 2, 293–314Google Scholar
  143. 143.
    Nugent, J. and Clark, S. (eds). (1985). Retinoids, differentiation and disease. Ciba Foundation Symposium 113. (London: Pitman)Google Scholar
  144. 144.
    Bollag, W. (1974). Theraupeutic effects of an aromatic retinoic acid analog. Chemotherapy, 21, 236–247Google Scholar
  145. 145.
    Alfthan, D., Tarlkanen, J., Gorhn, P., Heinonen, E., Pyrhonen, S. and Saila, K. (1983). Tigason (Etretinate) in prevention of recurrence of superficial bladder tumours. Eur. Urol., 9, 6–9PubMedGoogle Scholar
  146. 146.
    Meyskens, F. L., Gilmartin, E., Alberts, D. S., Levine, N. S., Brooks, R., Salmon, S. E., Surwit, E. A. (1983). Activity of isotretinoin against squamous cell cancers and preneoplastic lesions. Cancer Treat. Rep., 66, 1315–1319Google Scholar
  147. 147.
    Rustin, G. J. S. and Eccles, S. A. (1985). The potential clinical use of retinoids in oncology. (Meeting Report). Br. J. Cancer. 51, 443–445Google Scholar
  148. 148.
    Moon, R. C., McCormick, D. L. and Mehta, R. G. (1983). Inhibition of carcinogenesis by retinoids. Cancer Res. (Suppl.), 43, 2469s-2475sGoogle Scholar
  149. 149.
    Sporn, M. B. (1980). Retinoids and Cancer Prevention. In Slaga, T. J. (ed.) Carcinogenesis. Volume 5. Modifiers of Chemical Carcinogenesis. (New York: Raven Press)Google Scholar
  150. 150.
    Sporn, M. B., Squire, R. A., Brown, C. C., Smith, J. M., Wenk, M. L. and Springer, S. (1977). 13-c/s-Retinoic acid: inhibition of bladder carcinogenesis in the rat. Science, 195, 487–489Google Scholar
  151. 151.
    Eccles, S. A. (1985). Effects of retinoids on growth and dissemination of malignant tumours: immunological considerations. Biochem. Pharmacol., 34, 1599–1610PubMedGoogle Scholar
  152. 152.
    Rapp, F. (1983). Viral carcinogenesis. Int. J. Cytol., 15, Suppl. 15, 203–244Google Scholar
  153. 153.
    Wyke, J. and Weiss, R. A. (1984). The contribution of tumour viruses to human and experimental oncology. Cancer Surv., 3, 1–24Google Scholar
  154. 154.
    Gilden, R. V. amd Rabin, H. (1982). Mechanisms of viral tumorigenesis. Adv. Virus Res., 27, 281–334PubMedGoogle Scholar
  155. 155.
    Ernberg, I. and Kallin, B. (1984). Epstein-Barr virus and its association with human malignant diseases. Cancer Surv., 3, 51–89Google Scholar
  156. 156.
    Purtilo, D. T. and Klein, G. (1981). Introduction to Epstein-Barr virus and lymphoproliferative diseases in immunodeficient individuals. Cancer Res., 41, 4209–4304PubMedGoogle Scholar
  157. 157.
    Heller, M. and Keiff, E. (1981). Colinearity between the DNA’s of Epstein-Barr virus and herpesvirus papio. J. Virol., 37, 821–826PubMedGoogle Scholar
  158. 158.
    Yohn, D. S„ Lapin, B. A. and Blakeslee, J. R. (eds.) (1980). Advances in Comparative Leukaemia Research. (Amsterdam: Elsevier)Google Scholar
  159. 159.
    De Thé, G. (1980). Multistep carcinogenesis, Epstein-Barr virus and human malignancies. In Essex, M., Todara, G., Zur Hausen, H. (eds.) Viruses in Naturally-Occurring Cancers. pp. 11–21. (New York: Cold Spring Harbor Laboratory)Google Scholar
  160. 160.
    Munoz, N. (1973). Effect of herpes-virus type 2 and hormonal imbalance on the uterine cervix of the mouse. Cancer Res., 33, 1504–1508PubMedGoogle Scholar
  161. 161.
    Wenz, W. B., Reagen, J. W., Heggie, A. D., Fu, Y. and Anthony, D. D. (1981). Induction of uterine cancer with inactivated Herpes simplex virus types 1 and 2. Cancer, 48, 1783–1790Google Scholar
  162. 162.
    Giraldo, G., Beth, E. and Huang, E. S. (1980). Kaposi’s sarcoma and its relationship to cytomegalovirus (CMV). III. CMV DNA and CMV-early antigens in Kaposi’s sarcoma. Int. J. Cancer, 26, 23–29PubMedGoogle Scholar
  163. 163.
    Summers, J. A., Smolec, J. M. and Snyder, R. (1978). A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in Woodchucks. Proc. Natl. Acad. Sci., USA, 75, 4533–4537PubMedGoogle Scholar
  164. 164.
    Marion, P. L. and Robinson, W. S. (1983). Hepadna viruses: hepatitis B and related viruses. Curr. Top. Microbiol. Immunol ., 105, 99–121PubMedGoogle Scholar
  165. 165.
    Blumberg, B. S. and London, W. T. (1985). Hepatitis B virus and the prevention of primary cancer of the liver. J. Natl. Cancer Inst., 74, 267–273PubMedGoogle Scholar
  166. 166.
    Pfister, H. (1984). Biology and biochemistry of papilloma viruses. Rev, Physiol. Biochem. Pharmacol., 99,111–181Google Scholar
  167. 167.
    Gissmann, L. (1984). Papilloma viruses and their association with cancer in animals and in man. Cancer Surv., 3, 161–181Google Scholar
  168. 168.Gardner, S. D., Field, A. M., Coleman, D. V. and Hulme, B. (1971). New human papovavirus (BK) isolated from urine after renal transplantation. Lancet, i, 1253–1257Google Scholar
  169. 169.
    Takemoto, K. K. (1980). Human polyoma viruses: evaluation of their possible role in human cancer. In Essex, M., Todara, G., Zur Hausen, H. (eds.) Viruses in Naturally- occurring Cancers, pp. 311–318. (New York: Cold Spring Harbor Laboratories)Google Scholar
  170. 170.
    Houff, S. A., London, W. T., Zu Rhein, G. M., Padgett, B. L., Walker, D. L. and Sever, J. G. (1983). New World primates as a model of virus-induced astrocytomas. Prog. Clin. Biol. Res., 105, 223–226PubMedGoogle Scholar
  171. 171.
    Aaronson, S. A. Reddy, E., Robbins, K., Devare, S., Swan, D., Pierce, J. H. and Tronick, S. R. (1983). Retroviruses, one genes and human cancer. In Harris, C. C. and Autrup, H. N. (eds.) Human Carcinogenesis, pp. 609–630. (New York: Academic Press)Google Scholar
  172. 172.
    Bishop, J. M. (1983). Cellular oncogenes and retroviruses. Annu. Rev. Biochem., 52, 301–354PubMedGoogle Scholar
  173. 173.
    Gilden, R. W. and Rice, N. R. (1983). Oncogenes. Carcinogenesis, 4, 791–794PubMedGoogle Scholar
  174. 174.
    Varmus, H. E. (1985). Viruses genes and cancer. 1. The discovery of cellular oncogenes and their role in neoplasia. Cancer, 55, 2324–2333PubMedGoogle Scholar
  175. 175.
    Land, H., Parada, L. F. and Weinberg, R. A. (1983). Cellular oncogenes and multistep carcinogenesis. Science, 222, 771–778PubMedGoogle Scholar
  176. 176.
    Furmanski, P., Hager, J. C. and Rich, M. A. (eds.) (1985). RNA Tumor Viruses, Oncogenes, Human Cancer and Aids: On the Frontiers of Understanding. (The Hague: Martinus Nijhoff)Google Scholar
  177. 177.
    Spiegelman, S., Mesa-Tejada, R., Ohno, T., Ramanarayanan, M., Nayak, R., Bausch, J. and Fenoglio, C. (1980). The presence and clinical implications of a virus-related protein in human breast cancer. In Essex, M., Todaro, G., Zur Hausen, H. (eds.) Viruses in Naturally Occurring Cancers, pp. 1149–1170. (New York: Cold Spring Harbor Laboratories)Google Scholar
  178. 178.
    Schlom, J., Colcher, D., Drohan, W. and Kettman, R. (1978). The use of molecular hybridisation to track the mode of transmission and distribution of murine mammary tumour viruses: a model for etiological studies of human breast cancer. Prog. Exp. Tumour Res., 21, 140–158Google Scholar
  179. 179.
    Peters, G., Kozac, C. and Dickson, C. (1984). Mouse mammary tumor virus integration regions Int 1 and Int 2 map on different mouse chromosomes. Mol. Cell. Biol., 4, 375–378Google Scholar
  180. 180.
    Nusse, R., Van Ooyen, A., Cox, D., Fung, Y., and Varmus, H. (1984). Mode of proviral activation of a putative mammary oncogene (Int 1) on mouse chromosome 15. Nature, 307, 131–136PubMedGoogle Scholar
  181. 181.
    Lane, M., Sainten, A. and Cooper, G. M. (1981). Activation of related transforming genes in mouse and human mammary carcinomas. Proc. Natl. Acad. Sci. USA, 78, 5185–5189PubMedGoogle Scholar
  182. 182.
    Wong-Stahl, F. and Gallo, R. C. (1982). Retroviruses and leukaemia. In Gunz, F. and Henderson, E. (eds.) Leukaemia. Edition 4, pp. 329–358. (New York: Grune and Stratton)Google Scholar
  183. 183.
    Shaw, G. M., Broders, S., Essex, M. and Gallo, R. C. (1984). Human T-cell leukaemia virus: its discovery and role in leukaemogenesis and immunosuppression. Adv. Intern. Med., 30, 1–27PubMedGoogle Scholar
  184. 184.
    Ferrer, J. F., Cabradilla, C. and Gupta, P. (1980). Bovine leukaemia: a model for viral carcinogenesis. In Essex, M., Todaro, G. and Zur Hausen, H. (eds.) Viruses in Naturally Occurring Cancers, pp. 887–899. (New York: Cold Spring Harbor Laboratories)Google Scholar
  185. 185.
    Gallo, R. C. (1985). Human T cell leukaemia (lymphotropic) retroviruses and their causative role in T-cell malignancies and acquired immune deficiency syndrome. Cancer, 55,2317–2323PubMedGoogle Scholar
  186. 186.
    Kalyanaraman, V. S., Sarngadharan, M. G., Robert-Guroff, M., Miyoshi, I., Blayney, D., Golde, D. and Gallo, R. C. (1982). A new subtype of human T-cell leukaemia virus (HTLV- 11) associated with a T cell variant of hairy cell leukaemia. Science, 218, 571–573PubMedGoogle Scholar
  187. 187.
    Reif, A. E. (1984). Synergism in carcinogenesis. J. Natl. Cancer Inst., 73, 25–39PubMedGoogle Scholar
  188. 188.
    Zarbl, H., Sukumar, S., Arthur, A. V., Martin-Zanca, D. and Barbacid, M. (1985). Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methyl urea during initiation of mammary carcinogenesis. Nature (London), 315, 382–385Google Scholar
  189. 189.
    Balmain, A., Ramsden, M., Bowden, G. T. and Smith, J. (1984). Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature (London), 307, 658–660Google Scholar
  190. 190.
    Klein, G. and Klein, E. (1985). Evolution of tumours and the impact of molecular biology. Nature (London), 315, 190–195Google Scholar
  191. 191.
    Johnson, F. B. (1982). Chemical interactions with herpes simplex type 2 virus: enhancement of transformation by selected chemical carcinogens and pro-carcinogens. Carcinogenesis, 3, 1235–1240PubMedGoogle Scholar
  192. 192.
    McCarter, J. A. and Ball, J. K. (1974). Studies on the combined effects of oncornaviruses and chemical carcinogens in mice. In Ts’o, P. and Di Paolo, J. (eds.) Chemical Carcinogenesis, pp. 631–638. (New York: Marcel Dekker Inc.)Google Scholar
  193. 193.
    Tennant, R. W. and Rascati, R. J. (1980). Mechanisms of co-carcinogenesis involving endogenous retroviruses. In Slaga, T.J. (ed.) Carcinogenesis: A Comprehensive Survey. Vol. 5, pp. 185–205. (New York: Raven Press)Google Scholar
  194. 194.
    Yamamoto, N. (1984). Interaction of viruses with tumour promoters. Rev. Physiol. Biochem. Pharmacol ., 101, 111–159PubMedGoogle Scholar
  195. 195.
    Hsiao, W., Gattoni-Celli, S. and Weinstein, I. B. (1984). Oncogene-induced transformation of C3H 10 Tl/2 cells is enhanced by tumour promoters. Science, 226, 552–556PubMedGoogle Scholar
  196. 196.
    Arya, S. K. (1980). Phorbol ester mediated stimulation of the synthesis of mouse mammary tumour virus. Nature, 284, 71–73PubMedGoogle Scholar
  197. 197.
    Land, H., Parada, L. F. and Weinberg, R. A. (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two co-operating oncogenes. Nature (London), 304, 596–602Google Scholar
  198. 198.
    Newbold, R. F. and Overell, R. W. (1983). Fibroblast immortalisation is a pre-requisite for transformation by EJ C-H-ras oncogene. Nature, 304, 648–651PubMedGoogle Scholar
  199. 199.
    Marshall, C. J. and Rigby, P. (1984). Viral and cellular genes involved in oncogenesis. Cancer Surv., 3, 183–214Google Scholar
  200. 200.
    Thomassen, D. G., Gilmer, T. M., Annab, L. A. and Barrett, J. C. (1985). Evidence for multiple steps in neoplastic transformation of normal and preneoplastic Syrian hamster embryo cells following transfection with Harvey Murine sarcoma virus oncogene (v-Ha-ras). Cancer Res., 45, 726–732PubMedGoogle Scholar
  201. 201.
    Thorgeirsson, U. P., Turpeenniemi-Hujanen, T., Williams, J. E., Westin, E. H., Heilman, C. A., Talmadge, J. E. and Liotta, L. A. (1985). N1H/3T3 cells transfected with human tumor DNA containing activated ras oncogenes express the metastatic phenotype in nude mice. Mol. Cell. Biol., 5, 259–262PubMedGoogle Scholar
  202. 202.
    Eccles, S. A., Marshall, C. J., Vousden, K. and Purvies, H. P. (1985). Enhanced spontaneous metastatic capacity of mouse mammary carcinoma cells transfected with H- ras. In Hellmann, K. and Eccles, S. A. (eds.) Treatment of Metastasis: Problems and Prospects, pp. 385–88. (Basingstoke, UK: Taylor and Francis)Google Scholar
  203. 203.
    Turusov, V. S. (ed). (1973, 1979, 1982). Pathology of Tumours in Laboratory Animals. Volumes I–III. (Lyon: IARC Publications nos. 5, 23 and 34)Google Scholar
  204. 204.
    Zweiten, M. J. van (1984). The Rat as Animal Model in Breast Cancer Research. (The Hague: Martinus Nijhoff)Google Scholar
  205. 205.
    Reddy, A. L. and Fialkow, P. J. (1983). Papillomas induced by initiation-promotion differ from those produced by carcinogen alone. Nature (London), 283, 397–398Google Scholar
  206. 206.
    Scribner, J. D. and Scribner, N. K. (1982). Is the initiation-promotion regimen in mouse skin relevant to complete carcinogenesis? In Hecker, E., Fusenig, N. E., Kunz, W., Marks, F. and Thielmann, H. W. (eds.) Carcinogenesis: A Comprehensive Survey. Vol. 7, pp. 13–17. (New York: Raven Press)Google Scholar
  207. 207.
    Burns, F. J., Vanderlaan, M., Snyder, G. and Albert, R.E. (1978). Induction and progression kinetics of mouse skin papillomas. In Slaga, T.J., Sivak, A. and Boutwell, R.K. (eds.) Carcinogenesis: A Comprehensive Survey. Vol. 2, pp. 91–96. (New York: Raven Press)Google Scholar
  208. 208.
    Turusov, V., Day, N., Andrianov, L. and Jain, D. (1971). Influence of dose on skin tumours induced in mice by single application of 7,12 dimethylbenz (a) anthracene. J. Natl. Cancer Inst., 47, 105–111PubMedGoogle Scholar
  209. 209.
    Verma, A. K., Conrad, E. A. and Boutwell, R. K. (1982). Differential effects on retinoic acid and 7, 8 benzoflavone on the induction of mouse skin tumours by the complete carcinogenesis process and by the initiation-promotion regimen. Cancer Res., 42, 3519–3525PubMedGoogle Scholar
  210. 210.
    Hennings, H., Shores, R., Wenk, M. L., Splangler, E. F., Tarone, R. and Yuspa, S. H. (1983). Malignant conversion of mouse skin tumours is increased by tumour initiators and unaffected by tumour promoters. Nature (London), 304, 67–69Google Scholar
  211. 211.
    Marx, J. L. (1983). Do tumor promoters affect DNA after all? Science, 219, 158–159PubMedGoogle Scholar
  212. 212.
    Solt, D. B., Medline, A. and Farber, E. (1977). Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for the sequential analysis of liver carcinogenesis. Am. J. Pathol., 85, 595–618Google Scholar
  213. 213.
    Popper, H. and Selikoff, I. J. (1977). Comparison of neoplastic hepatic lesions in man and experimental animals. In Hiatt, H. H., Watson, J. D. and Winsten, J. A. (eds.) Origins of Human Cancer, pp. 1359–1382. (New York: Cold Spring Harbor Laboratories)Google Scholar
  214. 214.
    De Cosse, J. J. (ed.) (1983). Precancer. Cancer Surv., 2 no. 3. (London: Oxford University Press)Google Scholar
  215. 215.
    Carter, R. L. (ed.) (1984). Precancerous States. (London: Oxford University Press)Google Scholar
  216. 216.
    Muto, T., Bussey, H. J. R. and Morson, B. C. (1975). The evolution of cancer of the colon and rectum. Cancer, 36, 2251–2270PubMedGoogle Scholar
  217. 217.
    Friedman, E., Urmacher, C. and Winawer, S. (1984). A model for human colon carcinoma evolution based on the differential response of cultured pre-neoplastic, pre-malignant and malignant cells to 12–0-tetradecanoylphorbol-13-acetate. Cancer Res., 44, 1568–1578PubMedGoogle Scholar
  218. 218.
    Harris, C. C. (1985). Concluding remarks: role of carcinogens, cocarcinogens and host factors in cancer risk. In Harris, C. C. and Autrup, H. N. (eds.) Human Carcinogenesis, pp. 941–970 (New York: Academic Press)Google Scholar
  219. 219.
    Lee, A. E., Pang, L. S. C., Rogers, L. A. and Jeffery, R. E. (1983). Metastasis of mammary tumours in mice: relationship with morphology of primary tumours and reproductive background of host. Clin. Exp. Metastasis, 1, 223–227PubMedGoogle Scholar
  220. 220.
    Anderson, J. C., Fugmann, R. A., Stolfi, R. L. and Martin, D. S. (1974). Metastatic incidence of a spontaneous murine mammary adenocarcinoma. Cancer Res., 34,1916–1920PubMedGoogle Scholar
  221. 221.
    Eccles, S. A. (1983). Differentiation and neoplasia. Invasion and metastasis; experimental systems. J. Pathol., 141, 333–353PubMedGoogle Scholar
  222. 222.
    Hewitt, H. B. (1980). Animal tumour models: the intrusion of artefacts. In Hellmann, K., Hilgard, P. and Eccles, S. (eds.) Metastasis: Clinical and Experimental Aspects, pp. 18–22. (The Hague: Martinus Nijhoff)Google Scholar
  223. 223.
    Schirrmacher, V. (1984). Cancer metastasis and the use of animal model systems. Behring Inst. Mitt., 74, 195–200PubMedGoogle Scholar
  224. 224.
    Barnett, S. C. and Eccles, S. A. (1984). Studies of mammary carcinoma metastasis in a mouse model system. 1. Derivation and characterisation of cells with different metastatic properties during tumour progression in vivo. Clin. Exp. Metastasis, 2, 15–36Google Scholar
  225. 225.
    Lollini, P-L., Giovanni, C. D. E., Eusebi, V., Nicoletti, G., Prodi, G. and Nanni, P. (1984). High-metastatic clones selected in vitro from a recent spontaneous BALB/C mammary adenocarcinoma cell line. Clin. Exp. Metastasis, 2, 251–259PubMedGoogle Scholar
  226. 226.
    Kripke, M. L., Gruys, E. and Fidler, I. J. (1978). Metastatic heterogeneity of cells from an ultraviolet-light-induced murine fibrosarcoma of recent origin. Cancer Res., 38, 2962–2967PubMedGoogle Scholar
  227. 227.
    Weiss, L. (1983). Random and non-random processes in metastasis and metastatic inefficiency. Invasion Metastasis, 3, 193–207PubMedGoogle Scholar
  228. 228.
    Schirrmacher, V. (1980). Shifts in tumor cell phenotypes induced by signals from the microenvironment. Relevance for the immunobiology of cancer. Immunobiology, 157,Google Scholar

Copyright information

© MTP Press Limited 1987

Authors and Affiliations

  • S. A. Eccles

There are no affiliations available

Personalised recommendations