Skip to main content

Water economy

  • Chapter
The Tomato Crop

Part of the book series: The Tomato Crop ((WOCS))

Abstract

Water has a crucial role in determining the yield of tomato. The water status of a plant depends on the combined effect of the soil, the atmosphere and the plant itself. The availability of water to the plant is affected not only by water adhesion in the soil but also by the condition of the plant’s root system — namely, its size, density and activity. Water losses from the plant, though dependent on the humidity of the air, are strongly affected by leaf area, stomatal activity and the capacity of the plant to absorb water from the soil. These complex interrelations create the water status of the plant at any given time. Water status is dynamic rather than constant. Some of the changes to which it is subjected are very swift, others rather slow, but all are directly related to changes occurring in the atmosphere. Fluctuations in radiation, humidity and temperature exert a rapid effect on the water status of the plant. Accordingly, the plant has swift response mechanisms for a rapid adjustment to environmental changes, as well as slower response mechanisms which reflect metabolic aspects of plant activity. Both rapid and slow responses affect the ability of the tomato plant to grow, develop and yield fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acevedo, E., Fereres, E., Hsiao, T. C. and Henderson, D. W. (1979) Diurnal growth trends, water potential, and osmotic adjustment of maize and sorghum leaves in the field. Plant Physiol., 64. 476–80.

    PubMed  CAS  Google Scholar 

  • Ackerson, R. C., Kreig, D. R., Haring, C. L and Chang, N. (1977) Effects of plant water status on stomatal activity, photosynthesis, and nitrate reductase activity of field grown cotton. Crop Sci., 17, 81–84.

    CAS  Google Scholar 

  • Amble, R. A. and Sinnadurai, S. (1977) The influence of potassium, calcium and irrigation treatment on tomato quality. Acta Hortic., 53, 165–71.

    Google Scholar 

  • Bar-Yosef, B., Stammers, C. and Sagiv, B. (1980) Growth of trickle irrigation tomatoes as related to rooting volume and uptake of N and water. Agron. J., 72, 815–22.

    CAS  Google Scholar 

  • Behboudian, M. H. (1977a) Responses of eggplant to drought. I. Plant water balance. Scientia Hortic., 7, 303–10.

    Google Scholar 

  • Behboudian, M. H. (1977b) Responses of eggplant to drought. II. Gas exchange parameters. Scientia Hortic., 7, 311–17.

    CAS  Google Scholar 

  • Behboudian, M. H. (1977c) Water relation of cucumber, tomato and sweet pepper. Meded. Landbouwhogeschool Wageningen, 77, 1–84.

    Google Scholar 

  • Bonanno, A. R. and Mack, H. J. (1983) Water relations and growth of snap beans as influenced by differential irrigation. J. Amer. Soc. Hort. Sci., 108, 837–44.

    Google Scholar 

  • Boyer, J. S. (1967) Leaf water potential measured with a pressure chamber. Plant Physiol., 42, 133–39.

    PubMed  CAS  Google Scholar 

  • Boyer, J. S. (1970a) Leaf enlargment and metabolic rates in corn, soybean and sunflower at various leaf water potentials. Plant Physiol., 46, 233–35.

    CAS  Google Scholar 

  • Boyer, J. S. (1970b) Differing sensitivity of photosynthesis to low leaf water potential in corn and sorghum. Plant Physiol., 46, 236–39.

    CAS  Google Scholar 

  • Boyer, J. S. (1976a) Water deficits and photosynthesis, in Water Deficits and Plant Growth. Vol IV. Soil Water Measurements, Plant Responses, and Breeding for Drought Resistance (ed. T. T. Kuzlowski ). Academic Press. London, New York, pp 153–90.

    Google Scholar 

  • Boyer, J. S. (1976b) Photosynthesis at low water potentials. Phil. Trans. R. Soc. Lond. B. 273, 501–12.

    Google Scholar 

  • Bradford, K. J (1983a) Effects of soil flooding on leaf gas exchange of tomato plants. Plant Physiol., 73, 475–79.

    CAS  Google Scholar 

  • Bradford, K. J. (1983b) Involvement of plant growth substances in alteration of leaf gas exchange of flooded tomato plants. Plant Physiol., 73, 480–83.

    CAS  Google Scholar 

  • Bradford, K J. and Dilley, D. R. (1978) Effects of root anaerobiosis on ethylene production, epinasty and growth of tomato plants. Plant Physiol., 61, 506–09.

    PubMed  CAS  Google Scholar 

  • Bradford, K. J., Yang, S. F. (1980) Xylem transport of 1-amino cyclopropan-1-carboxylic acid, an ethylene precursor in waterlogged tomato plants. Plant Physiol., 65, 322–26.

    PubMed  CAS  Google Scholar 

  • Bradford, K. J. and Yang, S. F. (1981) Physiological responses of plants to waterlogging. HortSci., 16, 25–30.

    CAS  Google Scholar 

  • Bradford, K J. and Hsiao, T. C. (1982) Physiological responses to moderate water stress. In Physiological plant ecology II. Water relation and carbon assimilation. Encyclopedia of plant physiology N.S. V. 12R (eds O. L. Long, D. S. Nobel, C. B. Osmond and H. Ziegler ). Springer-Verlag. Berlin, Heidelberg, NY, pp. 263–324.

    Google Scholar 

  • Brady, C. J., Scott, N. S. and Munns, R. (1974) The interaction of water stress with the senescence pattern of leaves. In Roy. Soc. New Zealand. Bull, (eds R. L. Bielsky, A. R. Ferguson and M. N. Creswell ) 12, 403–09.

    Google Scholar 

  • Brix, H. (1962) The effect of water stress on the rates of photosynthesis and respiration in tomato plants and loblolly pine seedlings. Physiol. Plant., 15, 10–20.

    Google Scholar 

  • Brown, K. W., Jordan, W. R. and Thomas, J. C. (1976) Water stress induced alterations of the stomatal response to decreases in leaf water potential. Physiol. Plant., 37, 1–5.

    Google Scholar 

  • Brown, P. W. and Tanner, B. (1981) Alfalfa water potential measurement: a comparison of the pressure chamber and leaf dew-point hydrometers. Crop Sci., 21, 240–44.

    Google Scholar 

  • Cannell, G. H. and Asbell, C. W. (1974) Irrigation of field tomatoes and measurement of soil water changes by neutron moderation methods. J. Amer. Soc. Hort. Sci., 99, 305–08.

    Google Scholar 

  • Cohen, D. (1982) Water relation of cultivated tomato (Lycopersicum esculentum Mill.) and two relative specics (Solarium penellii Corr., Lycopersicum cheesmanii Riley). MSc thesis. Faculty of Agriculture. H. U. J. Rehovot. ( Hebrew with English summary. )

    Google Scholar 

  • Cohen, Y., Fuchs, M. and Green, G. C. (1981) Improvement of the heat pulse method for determining sap flow in trees. Plant, Cell and Environment, 4, 391–97.

    Google Scholar 

  • Cram, W. J. (1976) Negative feedback regulation of transport in cells: The maintenance of turgor, volume and nutrient supply, in Encyclopedia of Plant Physiology. N.S. V. 2A (eds U. Luttge and M. G. Pitman) Springer-Verlag, Berlin, N Y, pp. 264–316.

    Google Scholar 

  • Cutler, J. M., Rains, D. W. and Loomis, R S (1977a) The importance of cell size in the water relation of plants. Physiol. Plant., 40, 255–60.

    Google Scholar 

  • Cutler, J. M., Rains, D. W. and Loomis, R. S. (1977b) Role of changes in solute concentration in maintaining favorable water balance in field-grown cotton. Agron. J., 69, 773–79.

    Google Scholar 

  • Danon, A. (1984) Salinity effects on Lycopersicon and Solatium species. MSc thesis. Faculty of Agriculture. H. U. J. Rehovot. ( Hebrew with English summary. )

    Google Scholar 

  • Dumbroff, E. B. and Cooper, A. W. (1974) Effects of salt stress applied in balanced nutrient solution at several stages during growth of tomato. Bot. Gaz., 135, 219.

    Google Scholar 

  • Duniway, J. M. (1971) Water relations of Fusarium wilt in tomato. Physiol. Pl. Path., 1, 537–46.

    Google Scholar 

  • Duniway, J. M. and Slatyer, R. O. (1971) Gas exchange studies on the transpiration and photosynthesis of tomato leaves affected by Fusarium oxysporium f. sp. Lycopersici. Phytopathology. 61, 1377–81.

    CAS  Google Scholar 

  • Epstein, E. (1980) Response of plants to saline environments, in Genetic engineering of osmoregulation, (eds D. W. Rains, R C. Valentine and A. Hollaender ). Plenum Press, New York. pp. 7–21.

    Google Scholar 

  • Forsdyke, D. (1974) A comparison of glasshouse crop water requirements derived from sunshine and solarimeter records at Efford Experimental Husbandry Farm. ADAS Q. Rev., 12, 139–44.

    Google Scholar 

  • Friedrich, J. W. and Huffaker, R. C. (1980) Photosynthesis, leaf resistance, and nbulose-1.5 bisphosphate carboxylase degradation in senescing barley leaves. Plant Physiol., 65, 1103–12.

    PubMed  CAS  Google Scholar 

  • Gay, A. P. and Hurd, R. G. (1975) The influence of light on stomatal density in the tomato. New Phyiol., 75, 37–46.

    Google Scholar 

  • Gould, W. A. (1974) Tomato production, processing and quality evaluation. Avi Publishing Company Inc., USA.

    Google Scholar 

  • Govindjee, W., Dowton, J S., Fork, D. C. and Armond, P. A. (1981) Chlorophyll a fluorescence transience as an indicator of water potential of leaves. Plant Sci. Lett., 20, 191–94.

    CAS  Google Scholar 

  • Hagen, R. M., Haise, H. R. and Edminister. T. M. (eds) (1967) Irrigation of agricultural lands. Amer. Soc. of Agron. Medison, Wis., pp. 512–20.

    Google Scholar 

  • Handa, S., Brecssan, R. A., Handa, A. V., Carpita, N. C. and Hasegawa, P. M. (1983) Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant. Physiol., 73, 834–43.

    PubMed  CAS  Google Scholar 

  • Hanks, R. J., Gordner, H. R. and Florian, R. L. (1969) Plant growth evapotranspiration relations for several crops in the central great plains. Agron. J., 61, 30–34.

    Google Scholar 

  • Hewitt, J. D., Dinar, M. and Stevens, M. A. (1982) Sink strength of fruits of two tomato genotypes differing in total fruit solids content. J. Amer. Soc. Hort. Sci., 107, 896–900.

    CAS  Google Scholar 

  • Hinckley, T. M. (1973) Responses of Black Locust and tomato plains after water stress. HortSci., 8, 405–07.

    Google Scholar 

  • Ho, L. C. (1976) The relationship between the rates of carbon transport and of photosynthesis in tomato leaves. J. Exp. But., 27, 87–97.

    CAS  Google Scholar 

  • Holmes, J. W. (1956) Measuring soil water content and evaporation by the neutron scattering method. Neth. J. Agric. Sci., 4, 30–34.

    Google Scholar 

  • Hsiao, T. C. (1973) Plant response to water stress. Ann. Rev. Plant Physiol., 24, 519–70.

    CAS  Google Scholar 

  • Hsiao, T. C., Acevedo, E., Ferreres, E. and Henderson, D. W. (1976) Water stress, growth, and osmotic adjustment. Phil. Trans. R. Soc. Lond. R. 273, 479–500.

    Google Scholar 

  • Huffaker, R. C., Radin, T., Kleinkopf, G. E. and Cox, E. L. (1970) Effects of mild water stress on enzymes of nitrate assimilation and of the carboxylase phase of photosynthesis in barley. Crop Sci., 10, 471–74.

    CAS  Google Scholar 

  • Idso, S. B., Reginato, R. J., Reicosky, D. C. and Hatfield, J. L. (1981) Determination soil-induced plant water potential depression in alfalfa by means of infrared thermometry. Agron. J., 73, 826–30.

    Google Scholar 

  • Idso, S. B. (1982) Non water stressed baseline: A key to measuring and interpreting plant water stress. Agricultural Meteorology. 27, 59–70.

    Google Scholar 

  • Iljin, W. S. (1957) Drought resistance: plants and processes. Ann. Rev. Plant Physiol., 8, 257–74.

    CAS  Google Scholar 

  • Jackson, M. B. and Campbell, D. J. (1979) Effects of benzyladenine andgibberellic acid on the responses of tomato plants to anaerobic root environments and ethylene. New Phytol. 82, 331–40.

    CAS  Google Scholar 

  • Jackson, M. B., Gales, K. and Campbell, D. J. (1978) Effect of waterlogging soil conditions on the production of ethylene and on water relationships in tomato plants. J. Exp. Rot., 29, 183–93.

    CAS  Google Scholar 

  • Jackson, R. D., Idso, S. B., Reginato, R. J. and Pinter, P. J. (1981) Canopy temperature as a crop water stress indicator. Water Resour. Res., 17, 1133–38.

    Google Scholar 

  • Jones, M. M. and Rawson, H. M. (1979) Influence of rate of development of leaf water deficit upon photosynthesis, leaf conductance, water use efficiency and osmotic potential in sorghum. Physiol. Plant., 45, 103–11.

    Google Scholar 

  • Kamgar, A. A., Henderson, D. W. and Pruitt, W. O. (1980) Evaluating leaf water potential, stomatal resistance and canopy surface temperature of tomatoes as indices for irrigation timing. Acta Horitc., 100, 181–92.

    Google Scholar 

  • Kirkham, M. B., Gardner, W. R. and Gerloff, G. C. (1971) Regulation of cell division and cell enlargement by turgor pressure. Plant Physiol., 49, 961–62.

    Google Scholar 

  • Kramer, P. J. (1980) Drought, stress and the origin of adaptation, in Adaptation of plants to water and high temperature stress (eds N. C. T. Turner and P. J. Kramer ). Wiley and Sons, NY, pp. 7–20.

    Google Scholar 

  • Lakso, A. N., Geyer, A. S. and Carpenter, S. G. (1984) Seasonal osmotic relations in apple leaves of different ages. J. Amer. Soc. Hon., 109, 544–47.

    Google Scholar 

  • Ludlow, M. M. (1980) Adaptive significance of stomatal responses to water stress, in Adaptation of plants to water and high temperature stress (eds N. C. T. Turner and P. J. Kramer ). Wiley and Sons. NY. pp. 123–38.

    Google Scholar 

  • Lunin, J. and Gallatin, M. H. (1965) Zonal salinization of the root system in relation to plant growth. Soil Sci. Soc. of Amer. Proc., 29, 608–12.

    CAS  Google Scholar 

  • Mazor, Y. (1984) Relationships between yield and quality in processing tomatoes as effected by irrigation. MSc thesis. Faculty of Agriculture. H. U. J. Rehovot. ( Hebrew with English summary. )

    Google Scholar 

  • Meek, B. D., Ehlig, C. F., Stolzy, L. M. and Graham, L. E. (1983) Furrow and trickle irrigation: effects on soil oxygen and ethylene and tomato yield. Soil Sci. Soc. Am. J., 47, 631–35.

    CAS  Google Scholar 

  • Meyer, W. S. and Green, G.C. (1981) Plant indicators of wheat and soybean crop water stress. Irrig. Sci., 2, 167–76.

    Google Scholar 

  • Morgan, J. M. (1984) Osmoregulation and water stress in higher plants. Ann. Rev. Plant Physiol., 35, 299–319.

    Google Scholar 

  • Munns, R. and Weir, R. (1981) Contribution of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficit at two light levels. Aust. J. Plant Physiol., 8, 39–105.

    CAS  Google Scholar 

  • Nobel, F. S. (1983) Biophysical plant physiology and ecology. W. H. Freeman and Company, Oxford.

    Google Scholar 

  • Orly, H. (1984) The effect of potassium chloride salinity on yield and quality of processing tomatoes. MSc thesis Faculty of Agriculture. H. U. J Rehovot. ( Hebrew with English summary. )

    Google Scholar 

  • Orzolek, M D. and Angell, F. F. (1975) Seasonal trends of four quality factors in processing tomatoes. J. Amer. Soc. Hori. Sci., 100, 554–57.

    CAS  Google Scholar 

  • Phill, W. G. and Lambeth, V. N. (1980) Effects of soil water regime and nitrogen form on blossom-end rot, yield relation and elemental composition of tomato. J. Amer. Soc. Hort. Sci., 105, 730–34.

    Google Scholar 

  • Portas, C. A M. and Taylor, H. M (1976) Growth and survival of young plant roots in dry soil. Soil Sci., 121, 120–75.

    Google Scholar 

  • Portas, C. A. M. and Dordio, J. J. F. B. (1980) Tomato root system, a short review with reference on tomatoes for processing. Acta Hortic. 100, 113–24.

    Google Scholar 

  • Pruitt, W. O., Ferreres, E., Henderson, D. W. and Hagan, R. M. (1984) Evapotranspiration losses of tomatoes under drip and furrow irrigation. California Agric., May-June, 10–11.

    Google Scholar 

  • Raschke, K. (1975) Stomatal action. Ann. Rev. Plant Physiol., 26, 309–40.

    CAS  Google Scholar 

  • Raschke, K. (1979) Movement of stomata. in Physiology of movements. Encyclopedia of Plant Physiology New Ser. Vol. VII (eds W. Haupt and M. G. Feinbeib ). Springer. Berlin. Heidelberg, New York. pp. 383–441.

    Google Scholar 

  • Rendon-Poblete, E. (1980) Effect of soil water status on yield, quality and root development of several tomato genotypes. Ph.D. dissertation University of California. Davis.

    Google Scholar 

  • Rick, C. M. (1973) Potential genetic resources in tomato species: clues from observation in native habitats, in Genes, Enzymes and Populations (eds A. Hollaender and A. M. Srb ). Plenum Press. New York, pp. 255–68.

    Google Scholar 

  • Rothwell, J. B. and Jones, D. A. G. (1961) The water requirement of tomatoes in relation to solar radiation. Expl. Hort., 5, 25–30.

    Google Scholar 

  • Rudich, J., Kalmar, D., Geizenberg, C. and Harel, S. (1977) Low water tension in defined growth stages of processing tomato plants and their effects on yield and quality. J. Hort. Sci., 52, 391–400.

    Google Scholar 

  • Rudich, J., Rendon-Poblete, E., Stevens, M. A. and Ambri, A. I. (1981) Use of leaf water potential to determine water stress in field grown tomato plants. J. Amer. Soc. Hon. Sci., 106, 732–36.

    Google Scholar 

  • Rush, D. W. and Epstein, E. (1976) Genotypic responses to salinity, differences between salt sensitive and salt tolerant genotypes of tomato. Plant Physiol., 57, 162–66.

    PubMed  CAS  Google Scholar 

  • Rush, D. W. and Epstein, E. (1981) Comparative studies on sodium, potassium and chloride relations of wild halophytic and domestic salt sensitive tomato species. Plant Physiol., 68. 1308–13.

    PubMed  CAS  Google Scholar 

  • Sacher, R. F., Staples, R. C. and Robinson, R. W. (1983) Ion regulation and response of tomato to sodium chloride: A homeostatic system. J. Amer. Soc. Hort. Sci., 108, 566–69.

    CAS  Google Scholar 

  • Salter, P. J. (1957) The effects of different water regimes on the growth of plants under glass. Ill, Further experiments with tomatoes. J. Hort. Sci., 32, 212–20.

    Google Scholar 

  • Scholander, P. E., Hammel, H. T., Bradstreet, E. D. and Hemmingsen, E. A. (1965) Sap pressure in vascular plants. Science, 148, 339–46.

    PubMed  CAS  Google Scholar 

  • Scott, N. S. and Barbow, R. (1979) Polyribosome content in young and aged wheat leaves subjected to drought. J. Exp. Bot, 30, 905–11.

    CAS  Google Scholar 

  • Shimsi, D. and Livne, A. (1969) The estimation of the osmotic potential of plant sap by refractometry and conductimetry: A field method. Ann. Rot., 31, 505–11.

    Google Scholar 

  • Sinclair, T. R. and Ludlow, M. M. (1985) Who taught plants thermodynamics? The unfulfilled potential of plant water potential. Aust. J. Plant Physiol., 12, 213–17.

    Google Scholar 

  • Slatyer, R. O. and Taylor, S. A. (1960) Terminology in plant and soil-water relations. Nature Lond., 187, 922–24.

    Google Scholar 

  • Slavik, B (1974) Water in cells and tissues, introduction and terminology, Vol. IX in Ecology studies, methods of studing plant water relations (eds J. Jacobs, O. Lange, J. S. Olson and W. Wieser). Springer-Verlag. New York. pp. 1–12.

    Google Scholar 

  • Steudle, E., Zimmeimann, U. and Luttge, U. (1977) Effect of turgor pressure and cell size on the wall elasticity of plant cells. Plant Physiol., 59, 285–89.

    PubMed  CAS  Google Scholar 

  • Stevens, M. A. (1972) Relationships between components contributing to quality variation among tomato lines. J. Amer. Soc. Hort. Sci., 97, 70–73.

    Google Scholar 

  • Stevens, M. A. (1979) Tomato quality: potential for developing cultivars with improved flavor. Acta Hortic., 93, 317–29.

    Google Scholar 

  • Stevens, M. A. (1981) Composition and flavor tomatoes from the point of view of plant breeder. Proc. Third Tomato Quality Workshop. 12–14.

    Google Scholar 

  • Stevens, M. A., Kadar, A. A. and Albright, M. (1979) Potential for increasing tomato flavor via increased sugar and acid content. J. Amer. Soc. Hort. Sci., 104, 40–42.

    Google Scholar 

  • Stevens, M. A and Rudich, J. (1978) Genetic potential for overcoming physiological limitations on adaptability, yield and quality in the tomato. HortSci., 13, 673–78.

    CAS  Google Scholar 

  • Sullivan, C. H. and Eastin, J. D. (1974) Plant physiological responses to water stress. Agricultural Meteorology, 113–27.

    Google Scholar 

  • Tal, M., Imber, D. and Itai, C. (1970) Abnormal stomatal behavior and hormonal imbalance in flacca wilty mutant of tomato. I. Root effect and kinetin-like activity. Plant Physiol., 46, 367–72.

    PubMed  CAS  Google Scholar 

  • Tal, M. and Imher, D. (1970) Abnormal stomatal behavior and hormonal imbalance in flacca wilty mutant of tomato. II. Auxin and abscisic acid-like activity. Plant Physiol., 46, 373–76.

    PubMed  CAS  Google Scholar 

  • Tanaka, A., Fujita, K. and Kikuchi, K. (1974a) Nutrio-physiological studies on the tomato plant. I. Outline of growth and nutrient absorption. Soil Sci. Plant Nutr., 20, 57–68.

    CAS  Google Scholar 

  • Tanaka, A., Fujita, K. and Shioya, M (1974b) Nutrio-physiological studies on the tomato plant. II. Translocation of photosynthates. Soil Sci. Plant Nutr., 20, 163–71.

    CAS  Google Scholar 

  • Taylor, A. G., Motes, J. E. and Kirkhoun, M. B. (1982a) Germination and seedling growth characteristics of three tomato species affected by water deficits. J. Amer. Soc. Hort. Sci., 107, 282–85.

    Google Scholar 

  • Taylor, A. G., Motes, J. E. and Kirkhoun, M. B. (1982b) Osmotic regulation in germinating tomato seedlings. J. Amer. Soc. Hort. Sci., 107, 387–90.

    CAS  Google Scholar 

  • Taylor, S. A. (1952) Use of mean soil moisture tension to evaluate the effect of soil moisture on crop yields. Soil Sci., 74, 217–26.

    Google Scholar 

  • Thorne, J. H. and Roller, H. R. (1974) Influence of assimilate on photosynthesis, diffusive resistance, translocation and carbohydrate levels of soybean leaves. Plant Physiol., 54, 201–07.

    PubMed  CAS  Google Scholar 

  • Turner, N. C. and Jones, M. M. (1980) Turgor maintenance by osmotic adjustment: a review and evaluation, in Adaptation of plants to water and high temperature stress (eds N. C. Turner and P. J. Kramer ). Wiley and Sons. NY, pp. 83–107.

    Google Scholar 

  • Turner, N. C. (1981) Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58, 339–66.

    Google Scholar 

  • Waister, P. D. and Hudson, J. P. (1970) Effects of soil moisture regimes on leaf water deficit, transpiration and yield of tomatoes. J. Hort. Sci., 45, 359–70.

    Google Scholar 

  • Walker, A. J. and Ho, L. C. (1977) Carbon translocation in the tomato: effects of fruit temperature on carbon metabolism and the rate of translocation. Ann. Dot., 41, 825–32.

    CAS  Google Scholar 

  • Walker, A. J., Ho, L. C. and Baker, D. A. (1978) Carbon translocation in the tomato: pathways of carbon metabolism in the fruit. Ann. Bot., 42, 901–09.

    CAS  Google Scholar 

  • Wareing, P. E. and Patrick, J. W. (1975) Source-sink relations and the partition of assimilates in the plant, in Photosynthesis and productivity m different environments (ed. J. P. Cooper ). Cambridge University Press, London, pp. 481–99.

    Google Scholar 

  • Widders, I. and Lorenz, O. (1979) Tomato root development as related to potassium nutrition. J. Amer. Soc. Hort. Sci., 104, 216–20.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Chapman and Hall Ltd

About this chapter

Cite this chapter

Rudich, J., Luchinsky, U. (1986). Water economy. In: Atherton, J.G., Rudich, J. (eds) The Tomato Crop. The Tomato Crop. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3137-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3137-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7910-5

  • Online ISBN: 978-94-009-3137-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics