Skip to main content

Germination and vegetative development

  • Chapter
The Tomato Crop

Part of the book series: The Tomato Crop ((WOCS))

Abstract

The tomato originated on the dry west coast of tropical South America where, during the growing season, temperatures are moderate (average minimum night 15°C; average maximum day 19°C) and the only moisture is from thick mists (Cooper, 1972). Consequently, although it will grow under a wide range of conditions, it thrives in temperatures between 10°C and 30°C and is neither tolerant of frost, nor of waterlogged conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelhafeez, A. T., Harssema, H., Veri. G. and Verkerk, K. (1971) Effects of soil and air temperature on growth, development and water use of tomatoes. Neth. J. Agric. Sci.. 19, 67–75.

    Google Scholar 

  • Abdelhafeez, A. T. and Verkerk, K. (1969) Effects of temperature and water regime on the emergence and yield of tomatoes. Neth. J. Agric. Sci.. 17, 50–9.

    Google Scholar 

  • Abd el Rahman, A. A. and Bierhuizen, J. F. (1959) The effect of temperature and water supply on growth, transpiration and water requirement of tomato under controlled conditions. Mededehngen van de Landbouwhogeschool te Wagemngen, 59 (3).

    Google Scholar 

  • Abd el Rahman, A. A., Bierhuizen, J. F. and Kuiper. P. J. C. (1959) Growth and transpiration of tomato in relation to night temperature under controlled conditions. Mededelingen van de Landbouwhogeschool le Wageningen, 59 (4).

    Google Scholar 

  • Abdul, K. S., Canham, A. E. and Harris, G. P. (1978) Effects of CCC on the formation and abortion of flowers in the first inflorescence of tomato (Lycopersicon esculentum Mill.). Ann. Bot, 42. 617–25.

    CAS  Google Scholar 

  • Acock, B., Charles-Edwards, D. A. and Hand, D. W. (1976) An analysis of some effects of humidity on photosynthesis by a tomato canopy under winter light conditions and a range of carbon dioxide concentrations. J. Exp. But, 100, 933–41.

    Article  Google Scholar 

  • Acock, B., Charles-Edwards, D. A. and Hand, D. W. (1976) An analysis of some effects of humidity on photosynthesis by a tomato canopy under winter light conditions and a range of carbon dioxide concentrations. J. Exp. But, 100, 933–41.

    Article  Google Scholar 

  • Augustine, J. J., Stevens, M. A. and Breidenbach, R. W. (1979) Physiological, morphological, and anatomical studies of tomato genotypes varying in carboxylation efficiency. J. Am. Soc. Hon. Sci., 104, 338–41.

    CAS  Google Scholar 

  • Augustine, J. J., Stevens, M. A, Breidenbach, R. W. and Paige, D. F. (1976) Gcnotypic variation in carboxylation of tomatoes. PL Physiol, 57, 325–33.

    Article  CAS  Google Scholar 

  • Aung, I., H. (1976) Effects of photoperiod and temperature on vegetative and reproductive responses of Lycopersicon esculentum Mill. J. Am. Soc. Hort. Sci., 101, 358–60.

    Google Scholar 

  • Aung, I., H. and Austin, M. E. (1970) Gibberellin A3 modification of vegetative growth and flowering of dwarf tomatoes. J Hon. Sci, 45, 393–400.

    CAS  Google Scholar 

  • Aung, L. H. and Austin, M. E. (1971) Vegetative and reproductive responses of Lycopersicon esculentum Mill, to photoperiods. J. Exp. Bot, 22, 906–14.

    Article  Google Scholar 

  • Aung, L. H. and Byrne, J. M, (1976) Effects of 6-henzylamino purine and gibberellin A4/7 on seedling growth of Lycopersicon esculentum Mill. J. Am. Soc. Hort. Sci, 101, 189–92.

    Google Scholar 

  • Barton, L. V. and Garman, H. R. (1946) Effect of age and storage condition of seeds on yields of certain plants. Contrib. Boyce Thompson Inst, 14, 243–55.

    Google Scholar 

  • Berrie, A. M. M. and Drennan, D. S. H. (I971) The effect of hydration-dehydration on seed germination. New Phytol.. 70, 135–42.

    Google Scholar 

  • Berry, S. Z. (1969) Germinating response of the tomato at high temperature. Hort Sci, 4, 218–19.

    Google Scholar 

  • Bewley, J. D. and Black, M. (1982) Physiology and Biochemistry of Seeds in Relation to Germination. Vol. II. Viability, dormancy and environmental control. Springcr- Verlag. Berlin, 375 pp.

    Book  Google Scholar 

  • Binchy, A. and Morgan, J. V. (1970) Influence of light intensity and photoperiod on inflorescence initiation in tomatoes. Irish J. Agri. Res.. 9. 261–9.

    Google Scholar 

  • Bishop, F. M. and Whittingham, C. P. (1968) The photosynthesis of tomato plants in a carbon dioxide enriched atmosphere. Photosynthetica. 2, 31–8.

    Google Scholar 

  • Boscuk, S. (1981) Effects of kinetin and salinity on germination of tomato, barley and cotton seeds. Ann. Bot.. 48, 81–4.

    Google Scholar 

  • Bragt, J. van (1969) Effect of CCC on growth and gibberellin content of tomato plants. Netherlands J. Agric. Sci, 17, 183–8.

    Google Scholar 

  • Breazcale, Li. L. and McGeorge, W. T. (1953a) Exudation pressure in roots of tomato plants under humid conditions. Soil Sci, 75, 293–8.

    Article  Google Scholar 

  • Breazcale, E. L. and McGeorge, W. T. (1953b) Influence of atmospheric humidity on root growth. Soil Sci, 76, 361–5.

    Article  Google Scholar 

  • Brown, M. E., Jackson. R. M. and Burlingham, S. K. (1968) Effects produced on tomato plants. Lycopersicum esculentum, by seed or root treatment with gibberellic acid and indol-3yl-acctic acid. J. Exp. Bot 19, 544–52.

    Article  CAS  Google Scholar 

  • Bryan. H. H. (1970) Concentrating tomato maturity with growth regulators. Proc. Florida Sta. Hort. Soc, 83, 123–6.

    CAS  Google Scholar 

  • Bughee, B. and White, J. W. (1984) Tomato growth as affected by root zone temperature and addition of gibberellic acid and kinetin to nutrient solutions. J. Am. Soc. Hort. Sri, 109, 121–5.

    Google Scholar 

  • Calvert. A., (1959) Effect of the early environment on the development of flowering in tomato. II. Eight and temperature interactions. J. Hort. Sci 34, 154–62.

    Google Scholar 

  • Calvert. A., (1964) The effects of air temperature on growth of young tomato plants in natural light conditions. J. Hort. Sci, 39, 194–211.

    Google Scholar 

  • Calvert. A., (1969) Studies on the post-initiation development of flower buds of tomato (L. esculentum). J. Hort. Sci, 44, 117–26.

    Google Scholar 

  • Calvert, A. (1974) Growth characteristics of the ‘rogue’ tomato. New Phytol, 73, 31–8.

    Article  Google Scholar 

  • Canham, A. E. (1977) Some effects of light temperature and carbon dioxide on the growth of young tomato plants. Electricity Council Rep. R1040.

    Google Scholar 

  • Catalano, M. and Hill, T. A. (1969) Interaction between gibbercllic acid and kinctin in overcoming apical dominance, natural and induced by IAA. in tomato L. esculentum Mill cv Potentate. Nature. 222, 987–8.

    Article  Google Scholar 

  • Charles-Edwards, D. A. and Ludwig, L. J. (1975) The basis of expression of leaf photosynthetic activities, in Environmental and Biological Control of Photosynthesis (ed. R. Marcelle) Dr W. Junk. The Hague, pp. 37–44.

    Chapter  Google Scholar 

  • Colbert, K. A. and Beever, J. E. (1981) Effect of disbudding on root cytokinin export and leaf scncsccncc in tomato (Lycopersicon esculentum) and tobacco (Nicotiana tabacum). J. Exp. Bot, 32, 121–8.

    Article  CAS  Google Scholar 

  • Coleman, W. K. and Greyson, R. I. (1976a) The growth and development of the leaf in tomato (Lycopersicon esculentum). I. The plastochron index, a suitable basis for description. Can. J. Rot, 54, 2421–8.

    Google Scholar 

  • Coleman, W. K. and Grey-son, R. I. (1976b) The growth and development of the leaf in tomato (Lycopersicon esculentum). II. Leaf ontogeny. Can. J. Bot, 54, 2704–17.

    Article  Google Scholar 

  • Cooke, I. J. (1969) The influence of far-red light on the development of tomato seedlings. J. Hon. Sci, 44, 285–92.

    Google Scholar 

  • Cooper, A. J. (1966) Seasonal changes in net assimilation and leaf growth of young tomato plants. Acta Hort, 4, 76–8.

    Google Scholar 

  • Cooper, A. J. (1967) Effects of shading and time of year on net assimilation rates of young glasshouse tomato plants. Ann. Appl. Biol, 59, 85–90.

    Article  Google Scholar 

  • Cooper, A. J. (1969) Effects of shading on tomato stem extension. J. Hon. Sci.. 44, 75–9.

    Google Scholar 

  • Cooper, A. J. (1972) The native habitat of the tomato. Ann. Rep. Glasshouse Crops Res. Inst. (1971), 123–9.

    Google Scholar 

  • Cooper, A. J. (1973) Influence of rooting medium temperature on growth of Lycopersicon esculentum. Ann. Appl. Biol, 74, 379–85.

    Article  Google Scholar 

  • Cordner, H. B. and Hedger, C. (1959) Determinateness in the tomato in relation to variety and to application of N-meta-tolylphthalamic acid of high concentration. Proc. Am. Soc. Hort. Sci, 73, 323–30.

    CAS  Google Scholar 

  • Cornillon, P. (1974) Comportement de la tomate en fonction de la température du substrat. Ann. Agron, 25, 753–77.

    Google Scholar 

  • Crapo, N. L. and Ketellapper, H. J. (1981) Metabolic priorities with respect to growth and mineral uptake in roots of Hordeum Triticum and Lycopersicon. Am. J. Bot, 68, 10–16.

    Article  Google Scholar 

  • De Zeeuw, D. (1954) The influence of the leaf on flowering. Siededelingen van de Landbouwhogeschoolte Wageningen, 54, 1–44.

    Google Scholar 

  • Deshpande, S. U., Bronckers, F. and Stainier, F. (1974) Beginning of the first inflorescence of tomato, cultivant King Cross Type 70 and King Plus. Botanique. 5, 85–94.

    Google Scholar 

  • Ecole, D. (1974) Fonctionnement sympodial chez deux Solanacées du genre Lycopersicum. Rev. Cytol. Biol. Vegetate, 37, 127–60.

    Google Scholar 

  • Egles, D. and Rollin, P. (1968) La photosensibilité des graines de tomate var. St. Pierre. C. R. Acad. Sci, 266 (d), 1017–20.

    Google Scholar 

  • Fawusi, M. O. A. and Agboola, A. A. (1980) Soil moisture requirements for germination of sorghum, millet, tomato and cclosia. Agron. J, 72, 353–7.

    Article  Google Scholar 

  • Friend, D. J. C. and Helson, V. A. (1976) Thermoperiodic effects on the growth and photosynthesis of wheat and other crop plants. Bot. Gaz, 137, 75–84.

    Article  Google Scholar 

  • Gaastra, P. (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. Mededelingen van der Landbouwhogeschool de Wageningen. 59 (13), 1–68.

    Google Scholar 

  • Gay, A. P. and Hurd, R. G. (1975) The influence of light on stomatal density in the tomato. New Phytot, 75, 37–46.

    Article  Google Scholar 

  • Georghiou, K., Thanos, C. A., Tafas. T. P. and Mitrakes, K. (1982) Tomato seed germination. Osmotic prctrcatmcnt and far red inhibition. J. Exp. Bot, 33, 1068–75.

    Article  Google Scholar 

  • Gosiewski, W., Nilwik, H. J. M. and Bierhuizen, J. F. (1981) Effects of irradiance on photosynthesis of outdoor tomato cultivais. Gartenbauwissenschaft. 46, 213–17.

    CAS  Google Scholar 

  • Gosiewski, W., Nilwik, H. J. M. and Bierhuizen. J. F. (1982) The influence of temperature on photosynthesis of different tomato genotypes. Scientia Hortic, 16, 109–15.

    Article  CAS  Google Scholar 

  • Gosselin, A. and Trudel, M. J. (1982) Influence de la temperature du substrat sur la croissance, le developpement et le contenu en elements minéraux de plants de tomate (cv. Vendor). Can. J. Pl. Sci., 62, 751–7.

    Article  CAS  Google Scholar 

  • Gosselin, A. and Trudel, M. J. (1983) Interactions between air and root temperatures on greenhouse tomato: I. Growth, development, and yield. J. Am. Soc. Hori. Sci, 108, 901–5.

    Google Scholar 

  • Gosselin, A. and Trudel, M. J. (1984) Interactions between root-zone temperature and light levels on growth, development and photosynthesis of lycopersicon esculentum Mill, cultivar ‘Vendor’. Scientia. Hortic, 23, 313–21

    Article  Google Scholar 

  • Gray, R. A. (1957) Alteration of leaf size and shape and other changes caused by gibberellins in plants. Am. J. Rot, 44, 674–S2.

    Article  CAS  Google Scholar 

  • Harssema, H. (1977) Root temperature and growth of young tomato plants. Mededelingen Landbouwhogeschool Wageningen. 77 (19), 1–85.

    Google Scholar 

  • Hartmann, H. D. (1977) Influence of axillary shoots on growth and yield of tomato plants. Gartenbauwissenschaft, 42, 178–84.

    Google Scholar 

  • Hayward, H. E. (1938) Solanaceae - Lycopersicon esculentum, in The structure of Economic Plants. MacMillan, New York (reprinted edition (1967) by Cramer. Lehre). pp. 550–79.

    Google Scholar 

  • Heuchert, J. C. and Mitchell, C. A. (1983) Inhibition of shoot growth in greenhouse- grown tomato by periodic gyratory shaking. J. Am. Soc. Hort. Sci, 108, 801–5

    Google Scholar 

  • Heydecker, W. and Coolbear, P. (1977) Seed treatments for improved performance - survey and attempted prognosis. Seed Sci. Technol, 5, 353–425.

    CAS  Google Scholar 

  • Hicklenton, P. R. and Jolliffe, P. A. (1980) Alterations in the physiology of C02 exchange in tomato plants grown in CO2-enriched atmospheres. Can. J. Bot.. 58, 2181–9.

    Article  CAS  Google Scholar 

  • Highkin, H. R. and Hanson, J. B. (1954) Possible interaction between light-dark cycles and endogenous daily rhythms on the growth of tomato plants. PI. Physiol, 29, 301–2.

    Article  CAS  Google Scholar 

  • Hillman, W. S. (1956) Injury of tomato plants by continuous light and unfavourable photoperiodic cycles. Am. J. Bot, 43, 89–96.

    Article  Google Scholar 

  • Ho, L. C. (1977) Effects of C02 enrichment on the rates of photosynthesis and translocation of tomato leaves. Ann Appl Biol, 87, 191–200.

    Article  CAS  Google Scholar 

  • Ho, L. C. (1978) The regulation of carbon transport and the carbon balance of mature tomato leaves. Ann. Bot.. 42, 155–64.

    CAS  Google Scholar 

  • Ho, L. C. and Shaw, A. F. (1977) Carbon economy and translocation of l4C in leaflets of the seventh leaf of tomato during leaf expansion. Ann. Bot, 41, 833–48.

    CAS  Google Scholar 

  • Hogenboom, G. (1980) Tomatosimulator, Simulation of the Growth of Tomatoes in a Greenhouse Agricultural University. Wageningen, Netherlands, 2 Parts 161 pp. and 49 pp.

    Google Scholar 

  • Hurd, R. G. (1968) Effects of CO2 enrichment on the growth of young tomato plants in low light. Ann. Bot, 32, 531–42.

    Google Scholar 

  • Hurd, R. G. (1973a) Long-day effects on growth and flower initiation of tomato plants in low light. Ann. Appl. Biol, 73, 221–8.

    Article  Google Scholar 

  • Hurd, R. G. (1973b) Effects of carbon dioxide enrichment and humidity on tomato vegetative growth. Ann. Rep Glasshouse Crops Res. Inst 1972, 44–5.

    Google Scholar 

  • Hurd, R. G. (1974) The effect of an incandescent supplement on the growth of tomato plants in low light. Ann. Bol., 38, 613–23.

    Google Scholar 

  • Hurd, R. G., Gay, A. P. and Mountifield, A. C. (1979) The effect of partial flower removal on the relation between root, shoot and fruit growth in the indeterminate tomato. Ann. Appl. Biol, 93, 77–89.

    Article  Google Scholar 

  • Hurd, R. G. and Thornley, J. H M. (1974) An analysis of the growth of young tomato plants in water culture at different light integrals and C02 concentrations. I. Physiological Aspects. Ann. Bol., 38, 375–88.

    CAS  Google Scholar 

  • Hurewitz, J. and Janes, H. W. (1983) Effect of altering the root-zone temperature on growth, translocation, carbon exchange rate, and leaf starch accumulation in the tomato. Pl. Physiol, 73, 46–50.

    Article  CAS  Google Scholar 

  • Hussey, G. (1963a) Growth and development in the young tomato. I. The effect of temperature and light intensity on growth of the shoot apex and leaf primordia. J. Exp. Bot.. 14, 316–25.

    Article  Google Scholar 

  • Hussey, G. (1963b) Growth and development in the young tomato. II. The effect of defoliation on the development of the shoot apex. J. Exp. Bot, 14, 326–33.

    Article  Google Scholar 

  • Hussey, G. (1965) Growth and development in the young tomato. III. The effect of night and day temperatures on vegetative growth. J. Exp. Bot, 16. 373–85.

    Article  Google Scholar 

  • Hussey, G. (1971) Cell division and expansion and resultant tissue tensions in the shoot apex during the formation of a leaf primordium in the tomato. J. Exp. Bot, 22, 702–14.

    Article  Google Scholar 

  • James, E., Bass. L. N. and Clark, D.C. (1964) Longevity of vegetable seeds stored 15 to 30 years at Cheyenne, Wyoming. Am. Soc. Hon. Sci. Proc, 84, 527–34.

    Google Scholar 

  • Janes, B. E. (1954) Absorption and loss of water by tomato leaves in a saturated atmosphere. Soil Sci, 78, 189–97.

    Article  Google Scholar 

  • Jaworski, C. A. and Valli, V. J. (1965) Tomato seed germination and plant growth in relation to soil temperatures and phosphorous levels. Proc. Fla. Sta. Hon. Soc, 1964, 77, 177–83.

    Google Scholar 

  • Kemp, G. A. (1968) Low temperature growth responses of the tomato. Can. J. Pl. Sci, 48, 281–6.

    Article  Google Scholar 

  • Kerr, E. A. (1963) Germination of tomato seed as affected by fermentation time, variety, fruit maturity, plant maturity and harvest date. Rep. Hon. Exp. Stn Prod. Lab. Vine land 1962, pp. 79–85. (in Hon. Abstr, 34, 1909).

    Google Scholar 

  • Ketellapper, H. J. (1969) Diurnal periodicity and plant growth. Physiol. Plant, 22, 899–907.

    Article  Google Scholar 

  • Khan, A. A. and Sagar, G. R. (1966) Distribution of 14C-labelled products of photosynthesis during the commercial life of the tomato crop. Ann. Bot, 30, 727–13.

    CAS  Google Scholar 

  • Khan, A. A. and Sagar, G. R (1967) The distribution of the products of photosynthesis of the leaves of a tomato plant during the phase of fruit production. Hon. Res, 7, 61–9.

    CAS  Google Scholar 

  • Khavari-Nejad, R. A. (1980) Growth of tomato plants in different oxygen concentrations. Pholosynthetica, 14. 326–36.

    Google Scholar 

  • Kinet, J. M. (1977a) Effect of light conditions on the development of the inflorescence in tomato. Scientia Hortic, 6, 15–26.

    Article  Google Scholar 

  • Kinet, J M. (1977b) Effect of defoliation and growth suhstanccs on the development of the inflorescence in tomato. Scientia. Hortic, 6, 27–35.

    Article  CAS  Google Scholar 

  • Klapwijk, D. (1975a) Effects of aerial humidification on the growth of young tomato plants. Ann. Rep. Glasshouse Crops. Res. F xp. Sta. Naaldwijk, 1973 and 1974, 52–5.

    Google Scholar 

  • Klapwijk. D. (1975b) Daily growth in a dense crop of young tomato plants. Ann. Rep. Glasshouse Crops Res. Fxp. Sta. Naaldwijk, 1973 and 1974, 55.

    Google Scholar 

  • Klapwijk, D. (1977) Daily shaking curbs plant height but not flower development. Grower, 87, 382–4.

    Google Scholar 

  • Klapwijk. D. (1981) Effect of season on early tomato growth and development rates. Neth. J. Agric. Sci, 29, 179–88.

    Google Scholar 

  • Klapwijk, D. and Lint, P. J. A. L. de (1975a) Growth and development of young tomato plants. Ada Hori, 51, 147–61.

    Google Scholar 

  • Klapwijk, D. and Lint, P. J. A. L. de (1975b) Growth rates of tomato seedlings and seasonal radiation. Neth. J. Agric. Sci, 23, 259–68.

    Google Scholar 

  • Kotowski, F. (1926) Chemical stimulants and germination of seed. Proc. Am. Soc. Hon. Sci.. 23, 173–6.

    CAS  Google Scholar 

  • Kramer, M. and Went, F. W. (1949) The nature of the auxin in tomato stem tips. Pl. Physiol., 24, 207–21.

    Article  CAS  Google Scholar 

  • Kristoffersen, T. (1963) Interactions of photoperiod and temperature in growth and development of young tomato plants (Lycopcrsicon esculenlum Mill.). Physiol. Pl.. 16, (Suppl.), 1–94.

    Article  Google Scholar 

  • Kurtz, S. M. and Lineberger, R. D. (1983) Genotypic differences in morphogenic capacity of cultured leaf explants of tomato. J. Am. Soc. Hon. Sci, 108, 710–14.

    CAS  Google Scholar 

  • Learner, E. N. and Wittwer, S. H. (1952) Comparative effects of low temperature exposure, limited soil moisture, and certain chemical growth regulators as hardening agents for greenhouse grown tomatoes. Proc. Am. Soc. Hon. Sci, 60, 315–20.

    CAS  Google Scholar 

  • Lee, R. B. and Whittingham, C. P. (1974) The influence of partial pressure of carbon dioxide upon carbon metabolism in the tomato leaf. J. Exp. Bot, 25, 277–87.

    Article  CAS  Google Scholar 

  • Lingle, J. C. and Davis, R. M. (1959) The influence of soil temperature and phosphorus fertilization on the growth and mineral absorption of tomato seedlings. Proc. Am. Soc. Hon. Sci, 73, 312–22.

    CAS  Google Scholar 

  • Liptay, A. and Schopfer, P. (1983) Effect of water stress, seed coat restraint and abscisic acid upon different germination capabilities of two tomato lines at low temperature. PI. Physiol 73, 935–8.

    Article  CAS  Google Scholar 

  • Lorenz, O. A. and Maynard, D. N. (1980) Knoll’s Handbook for Vegetable Growers. Wiley, Chichester, 390 pp.

    Google Scholar 

  • Luckwill, L. C. (1943) The genus Lycopcrsicon, an historical, biological and taxonomic survey of the wild and cultivated tomatoes. Aberdeen University Studies no. 120.

    Google Scholar 

  • Ludwig, L. J. (1974) Effects of light flux density, C02 enrichment and temperature on leaf photosynthesis. Ann. Rep. Glasshouse Crops Res. Inst 1973, 47–9.

    Google Scholar 

  • Ludwig, L. J, Charles-Edwards, D. A. and Withers, A. C. (1975) Tomato leaf photosynthesis and respiration in various light and carbon dioxide environments, in Environmental and Biological Control of Photosynthesis, (cd. R. Marcelle), Dr W. Junk, The Hague, pp. 29–36.

    Google Scholar 

  • Ludwig, L. J. and Withers, A. C. (1984) Photosyntnetic responses to CO2 in relation to leaf development in tomato, in Advances in Photosynthesis Research, (ed. C. Sybesca ), Martinus Nijhoff/Dr W. Junk, The Hague. Vol. 4. pp. 217–20

    Google Scholar 

  • Madsen, E., (1968) Effect of CO2-concentration on the accumulation of starch and sugar in tomato leaves. Physiol. Pl, 21, 168–75.

    Article  CAS  Google Scholar 

  • Maksymowych, R. (1973) Analysis of Leaf Development. Cambridge University Press. Cambridge, 109 pp.

    Google Scholar 

  • Maluf, W. R. and Tigchelaar, E. C. (1980) Responses associated with low temperature seed germinating ability in tomato. J. Am. Soc. Hon. Sci, 105, 280–3.

    CAS  Google Scholar 

  • Mancinelli, A. L., Borthwick, H. A. and Hendricks, S. B. (1966) Phtyochrome action in tomato seed germination. Rot. Gaz, 127, 1–5.

    Article  CAS  Google Scholar 

  • Mancinelli, A. L., Yaniv, Z. and Smith, P. (1967) Phytochrome and seed germination. I. Temperature dependence and relative Pfr levels in the germination of dark- germinating tomato seeds. PI. Physiol, 42, 333–7.

    Article  CAS  Google Scholar 

  • Menhenett, R. and Wareing, P. F. (1975) Possible involvement of growth substances in the response of tomato plants (Lycopersicon esci/lentum Mill.) to different soil temperatures. J. Hon. Sci, 50, 381–97.

    CAS  Google Scholar 

  • Mishra, D. and Pradhan, G. C. (1972) Effect of transpiration-reducing chemicals on growth, flowering, and stomatal opening of tomato plants. PI Physiol, 50, 271–4.

    Article  CAS  Google Scholar 

  • Mobayen, R. G. (1980) Germination of citrus and tomato seeds in relation to temperature. J. Hon. Sci, 55, 291–7.

    Google Scholar 

  • Morgan, J. V. and Binchy, A. (1968) Influence of supplementary light, carbon dioxide enrichment and CCC on the height and dry weight of tomato plants. Irish J. Agric. Res, 7, 15–22.

    CAS  Google Scholar 

  • Moss, G. I. (1983) Root-zone warming of greenhouse tomatoes in nutrient film as a means of reducing heating requirements. J. Hon. Sci, 58, 103–9.

    Google Scholar 

  • Muller, C. H. (1940) A revision of the genus Lycopersicon. US Dept. Agric. Misc. Puhl, no. 382.

    Google Scholar 

  • Nakamura, S., Sato, T., Sato, T. and Mine, T. (1972) Storage of vegetable seeds dressed with fungicidal dusts. Int. Seed Testing Assoc. Proc.. 37, 961–8.

    Google Scholar 

  • Newton, P. (1966) The influence of increased CO2 concentration and supplementary illumination on growth of tomato seedlings during the winter months. Ann. Appl. Riol.,S7, 345–53.

    Google Scholar 

  • Ng, T. and Tigehelaar, E. C. (1973) Inheritance of low temperature seed sprouting in tomato. J. Am. Soc. Hon. Sci, 98, 314–16.

    Google Scholar 

  • Nieman, R. H. (1962) Some effects of sodium chloride on growth, photosynthesis and respiration of twelve crop plants. Rot. Gaz, 123, 279–85.

    Article  CAS  Google Scholar 

  • Nilsen, S., Hovland, K., Dons, C. and Sletten, S. P. (1983) Effect of CO2 enrichment on photosynthesis, growth and yield of tomato. Scientia Honic, 20, 1–14.

    Article  CAS  Google Scholar 

  • Nilwik. H. J. M., Gosiewski, W. and Bierhuizen, J. F. (1982) The influence of irradiance and external CO2-concentration on photosynthesis of different tomato genotypes. Scientia Honic, 16, 117–23.

    Article  CAS  Google Scholar 

  • Nourai, A. H. A. and Harris, G. P. (1983) Effects of growth retardants on inflorescence development in tomato. Scientia Honic., 20, 341–8.

    Article  CAS  Google Scholar 

  • Nutile, G. E. (1964) Effect of desiccation on viability of seeds. Crop Sci, 4, 325–8.

    Article  Google Scholar 

  • Peat, W. E. (1970) Relationships between photosynthesis and light intensity in the tomato. Ann. Bot, 4, 319–28.

    Google Scholar 

  • Phatak, S. C., Jaworski, C. A. and Liptay, A. (1981) Flowering and adventitious root growth of tomato cultivars as influenced by ethephon. HonSci., 16, 181–2.

    CAS  Google Scholar 

  • Pisarezyk, J. M. and Splittstoesser, W. E. (1979) Controlling tomato transplant height with chlormequat, daminozide, and ethephon. J. Am. Soc. Hort. Sci, 104, 342–4.

    Google Scholar 

  • Poiter, A. M. (1937) Effect of light intensity on the photosynthetic efficiency of tomato plants. PI Physiol, 12, 225–52.

    Article  Google Scholar 

  • Post, C. J. van der (1968) Simultaneous, observations on root and top growth. Acta Hon.. 7, 138–43.

    Google Scholar 

  • Railton, I. D. and Reid, D. M. (1973) Effects of benzyladenine on the growth of waterlogged tomato plants. Planta. 111, 261–6.

    Article  CAS  Google Scholar 

  • Read, P. E. and Fieldhouse, D. J. (1970) Use of growth retardants for increasing tomato yields and adaptation for mechanical harvest. J. Am. Soc. Hon. Sci, 95, 73–8.

    CAS  Google Scholar 

  • Rees, A. R. (1970) Effect of heat-treatment for virus attentuation on tomato seed viability. J. Hon. Sci, 45, 33–40.

    Google Scholar 

  • Reid, D. M. and Crozier, A. (1971) Effects of waterlogging on the gibberellin content and growth of tomato plants. J. Exp. Boi.. 22, 39–48.

    Article  CAS  Google Scholar 

  • Robinson, F. E. and McCoy, O. D. (1967) Population, growth rate and maturity of vegetable crops in relation to soil salinity and texture under sprinkler and furrow irrigation. Agron. J.. 59, 178–81.

    Article  Google Scholar 

  • Saleh, M. M. S. and Abdul, K. S. (1980) Effects of gibberellic acid and cycocel on growth, flowering and fruiting of tomato. Lycopcrsicon esculentum Mill, plants Mesopotamia J. Agric, 15, 137–66.

    CAS  Google Scholar 

  • Sawhney, V. K. and Greyson, R. I. (1972) On the initiation of the inflorescence and floral organs in tomato (Lycopcrsicon esculentum). Can. J. Bot.. 50, 1493–5.

    Google Scholar 

  • Schmueli, M. and Goldberg, D. (1971) Emergence, early growth and salinity of five vegetable crops germinated by sprinkle and trickle in an arid zone. Hort Sci, 6, 563–4.

    Google Scholar 

  • Scott, S. J. and Jones, R. A. (1982) Iow temperature seed germination of Lycopcrsicon species evaluated by survival analysis. Euphytica, 31, 869–83.

    Article  Google Scholar 

  • Shalhevet, J. and Yaron, B. (1973) Effect of soil and water salinity on tomato growth. Plant Soil. 39, 285–92.

    Article  CAS  Google Scholar 

  • Siegel, S. M. and Rosen, L. A. (1962) Effects of reduced oxygen tension on germination and seedling growth. Physiol. PL 15, 437–44.

    Article  CAS  Google Scholar 

  • Smith, P. G. and Millett, A. H. (1964) Germinating and sprouting responses of the tomato at low temperature. J. Am. Soc. Hon. Sci.. 84, 480–4.

    Google Scholar 

  • Strivastava, R. P. (1960) Effect of treatment on tomato seeds with plant regulators. J. Sci. Res. Baranas Hindi Univ., 11, 80–5. (Abstr. Hon. Abstr.. 33, 739–40 ).

    Google Scholar 

  • Suto, K. and Ando, T. (1975) Influence of atmospheric humidity and soil moisture contents on the plant water condition as well as on the growth of sweet pepper and tomato plants. Bull. Veg. Ornamental Crops Res. Sta., Ishinden-Ogoso, Japan. Series A 2, 49–63.

    Google Scholar 

  • Tanaka, A., Fujita, and Shioya (1974) Nutriophysiological studies on the tomato plant II. Translocation of photosynthesis. Biol. Abstr, 59, 5 1954.

    Google Scholar 

  • Taylor, A. G., Motes, J. E. and Kirkham, M. B. (1982) Germination and seedling growth characteristics of three tomato species affected by water deficits. J. Am. Soc. Hon. Sci, 107, 282–5.

    Google Scholar 

  • Taylorson, R. B. (1982) Interaction of phytochrome and other factors in seed germination, in The Physiology and Biochemistry of Seed Development, Dormancy and Germination (ed. A. A. Khan ). Elsevier Biomedical Press. Amsterdam, 323–46.

    Google Scholar 

  • Thompson, P. A. (1974) Characterisation of the germination response to temperature of vegetable seeds. 1. Tomatoes. Sctentia Hortic.. 2, 35–54.

    Article  Google Scholar 

  • Thornley, J H. M. (1976) Mathematical Models in Plant Physiology. Academic Press. London, 318 pp.

    Google Scholar 

  • Thornley, J. H M. and Hurd, R. G. (1974) An analysis of the growth of young tomato plants in water culture at different light integrals and CO, concentrations. II. A mathematical model. Ann. Bot, 38, 389–400.

    CAS  Google Scholar 

  • Thornley, J. H. M., Hurd, R. (i. and Pooley, A. (1981) A model of growth of the fifth leaf of tomato. Ann. Bot., 48, 327–40.

    Google Scholar 

  • Tognoni, F., Halevy, A H. and Wittwer, S. H. (1967) Growth of bean and tomato plants as affected by root absorbed growth substances and atmospheric carbon dioxide. Planta, 72, 43–52.

    Article  CAS  Google Scholar 

  • Toole, E. H. (1961) The effect of light and other variables on the control of seed germination. Int. Seed Testing Assoc. Proc, 26, 659–73.

    Google Scholar 

  • Tucker, D.J. (1976) Effects of far red light on the hormonal control of side shoot growth in the tomato. Ann. Bot, 40, 1033–42.

    CAS  Google Scholar 

  • Tucker, D. J. (1981) Phytochrome regulation of leaf senescence in cucumber and tomato. Pl. Sci. Lett.. 23, 103–8.

    Article  CAS  Google Scholar 

  • Vandenberg, J. and Tiessen, H. (1972) Influcncc of wax-coated and polyethylene- coated paper mulch on growth and flowering of tomato. Hort Sci, 7, 464–5.

    Google Scholar 

  • Verkerk, K. (1955) Temperature, light and the tomato. Mededelingen van de Landbouwhogeschool te Wageningen, 55, 175–224.

    Google Scholar 

  • Vriesenga, J. D. and Honma, S. (1974) Intercalary inflorescence in the tomato. J. Hered, 65, 128–9.

    Google Scholar 

  • Wagenvoort, W. A. and Bierhuizen, J. F. (1977) Some aspects of seed germination in vegetables. II. The effects of temperature fluctuation, depth of sowing, seed size and cultivar on heat sum and minimum temperature for germination. Sciemia Ilortic.. 5, 259–70.

    Google Scholar 

  • Walker, A J. and Ho. L. C. (1977) Carbon translocation in the tomato: carbon import and fruit growth. Ann. Bot.. 41, 813–23.

    CAS  Google Scholar 

  • Warren Wilson, J. (1966) Effects of temperature on net assimilation rate. Ann. Bot, 30, 753–61.

    Google Scholar 

  • Went, F. W. (1944) Plant growth under controlled conditions. II. Thermoperiodicity in growth and fruiting of the tomato. Am. J. Bot, 31, 135–50.

    Article  Google Scholar 

  • Went, F. W. (1945) Plant growth under controlled conditions. V. The relation between age. light, variety and thermoperiodicity of tomatoes. Am. J. Bot.. 32, 469–79.

    Article  Google Scholar 

  • Went, F. W. (1957) Germination, in The Experimental Control of Plant Growth. Chronica Botanica Co., Waltham Mass., pp. 259–66.

    Google Scholar 

  • Wheeler, R. M. and Salisbury, F. B. (1979) Water spray as a convenient means of imparting mechanical stimulation to plants. Hort Sci, 14, 270–1.

    Google Scholar 

  • Whittington, W J. and Fierlinger, P. (1972) The genetic control of time to germination in tomato. Ann. Bot, 36, 873–80.

    Google Scholar 

  • Whittington, W. J., Childs, J. D., Hartridge, J. M. and How. J. (1965) Analyses of variation in the rates of germination and early seedling growth in tomato. Ann. Bot.. 29, 59–71.

    Google Scholar 

  • Withers, A. C., Besford, R. T., Chow, W. S. and Ludwig, L. J. (1984) Light adaptation in tomato leaves, in Advances in Photosynthesis Research (ed. C. Sybesma ), Vol. IV. Martinus Nijhoff/Dr W. Junk, The Hague, pp 297–300.

    Google Scholar 

  • Withrow, A. P. and Withrow, R. B. (1949) Photoperiodic chlorosis in tomato. PI. Physiol, 24, 657–63.

    Article  CAS  Google Scholar 

  • Wittwer, S. M. and Dedolph, R. K. (1963) Some effects of kinetin on the growth and flowering of intact green plants. Am. J. Rot, 50, 330–6.

    Article  CAS  Google Scholar 

  • Witter, S. H. and Tolbert, N. E. (1960) (2-Chloroethyl)trimethylammonium Chloride and related compounds as plant growth substance. III. Effect on growth and flowering of the tomato. Am. J. Bot., 47, 560–5.

    Article  Google Scholar 

  • Yaniv, Z. and Mancinelli, L. A. (1968) Phytochrome and seed germination. IV. Action of light sources with spectral energy distribution on the germination of tomato seeds. PI. Physiol.. 43, 117–20.

    Article  CAS  Google Scholar 

  • Yaniv, Z., Mancinelli, L. A. and Smith, P. (1967) Phytochrome and seed germination. III. Action of prolonged far red irradiation on the germination of tomato and cucumber seeds. Pl. Physiol, 42, 1479–82.

    Article  CAS  Google Scholar 

  • Younis, M. E. and El-Tigani, S. (1977) Comparative effects of growth substances on the growth, flowering and fruiting of tomato plants. Acta Agron. Acad. Sci. Hung.. 26, 89–103.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Chapman and Hall Ltd

About this chapter

Cite this chapter

Picken, A.J.F., Stewart, K., Klapwijk, D. (1986). Germination and vegetative development. In: Atherton, J.G., Rudich, J. (eds) The Tomato Crop. The Tomato Crop. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3137-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3137-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7910-5

  • Online ISBN: 978-94-009-3137-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics