Skip to main content

dsRNA killer systems in yeast

  • Chapter
Yeast Biotechnology

Abstract

Killer yeasts, first identified by Bevan and Makower (1963), secrete proteinaceous toxins which kill other, sensitive yeasts. It is now more than a decade since the cytoplasmic determinants associated with the killing phenomenon were shown to be encapsidated dsRNA molecules. It was originally demonstrated that only two major species of dsRNA molecule were involved — the L and M dsRNAs. Since then a plethora of literature has emerged identifying or reporting the existence of a whole range of dsRNA species. Some of these have been named, and are, in decreasing size order, XL, LBC and LA (co- or closely migrating species), T, W and M. Despite this apparent increase in the complexity of the system, there is evidence for only one L genome, LA, and the M genome being involved in the killer phenomenon. No evidence links the ‘other’ species, XL, LBC, T and W with the killer system. However, since these species have not, unlike the 5.9-kb encapsidated dsRNA intermediates of the yeast Ty elements, been implicated in any other system, they will be considered here. The involvement of LA and M genomes is beyond doubt. LA dsRNAs encode their own major capsid polypeptide, and that of M dsRNA. M dsRNAs encode the killer toxin and immunity function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. M. and S. Cory 1975. Modified nucleotides and bizarre 5’-termini in mouse myeloma mRNA. Nature New Biology 255, 28–33.

    CAS  Google Scholar 

  • Adler, J. and D. W. R. Mackenzie 1972. Abstracts of the Annual Meeting of the American Society of Microbiology 8.

    Google Scholar 

  • Adler, J., H. A. Wood and R. F. Bozarth 1976. Virus-like particles from killer, neutral and sensitive strains of Saccharomyces cerevisiae. Journal of Virology 17, 472–6.

    CAS  Google Scholar 

  • Al-Aidroos, K. and H. Bussey 1978. Chromosomal mutants of Saccharomyces cerevisiae affecting the cell wall binding site for killer factor. Canadian Journal of Microbiology 24, 228–37.

    CAS  Google Scholar 

  • Antczak, J. B., R. Chmelo, D. J. Pickup and W. K. Joklik 1982. Sequences at both termini of the 10 genes of Reovirus serotype 3 (strain Dearing). Virology 121, 307–19.

    CAS  Google Scholar 

  • Ball, S. G., C. Tirtiaux and R. B. Wickner 1984. Genetic control of L-A and L-(BC) dsRNA copy number in killer systems of Saccharomyces cerevisiae. Genetics 107, 199–217.

    CAS  Google Scholar 

  • Berry, E. A. and E. A. Bevan 1972. A new species of double-stranded RNA from yeast. Nature (London) 239, 279–80.

    CAS  Google Scholar 

  • Bevan, E. A. and A. J. Herring 1976. The killer character in yeast: preliminary studies of virus-like particle replication. In Genetics, biogenesis and bioenergetics of mitochondria, R. J. Bandelow, D. Y. Schweyen, K. Thomas, K. Wolf and F. Kaudewitz (eds), 153–62. Berlin, New York: Walter de Gruyter.

    Google Scholar 

  • Bevan, E. A. and M. Makower 1963. The physiological basis of the killer character in yeast. Proceedings of the XIth International Congress on Genetics 1, 202–3 (abstr.).

    Google Scholar 

  • Bevan, E. A. and J. M. Somers 1969. Somatic segregation of the killer (k) and neutral (n) cytoplasmic genetic determinants in yeast. Genetical Research Cambridge 14, 71–7.

    CAS  Google Scholar 

  • Bevan, E. A., A. J. Herring and D.J. Mitchell 1973. Preliminary characterisation of two species of dsRNA in yeast and their relationship to the ‘killer’ character. Nature (London) 245, 81–6.

    CAS  Google Scholar 

  • Bitter, G. A., K. K. Chen, A. R. Banks and P.-H. Lai 1984. Secretion of foreign proteins from Saccharomyces cerevisiae directed by a-factor gene fusions. Proceedings of the National Academy of Sciences of the USA 81 (17), 5330–4.

    CAS  Google Scholar 

  • Bobek, L. A., J. A. Bruenn, L. J. Field and K. W. Gross 1982. Cloning of cDNA to a yeast viral double-stranded RNA and comparison of three viral RNAs. Gene 19, 225–30.

    CAS  Google Scholar 

  • Bobek, L. A., J. A. Bruenn, L. J. Field, J. D. Reilly and K. W. Gross 1983. Cloning of cDNAs homologous to a yeast viral dsRNA. In Double-stranded RNA viruses, R. W. Compans and D. H. L. Bishop (eds), 451–6. New York: Elsevier.

    Google Scholar 

  • Bostian, K. A., J. A. Sturgeon and D. J. Tipper 1980a. Encapsidation of yeast killer double-stranded ribonucleic acids: dependence of M on L. Journal of Bacteriology 143 (1), 463–70.

    CAS  Google Scholar 

  • Bostian, K. A., J. E. Hopper, D. T. Rogers and D. J. Tipper 1980b. Translational analysis of the killer-associated virus-like particle dsRNA genome of S. cerevisiae: M dsRNA encodes toxin. Cell 19, 403–14.

    CAS  Google Scholar 

  • Bostian, K. A., S. Jayachandran and D. J. Tipper 1983a. A glycosylated protoxin in killer yeast: models for its structure and maturation. Cell 32, 169–80.

    CAS  Google Scholar 

  • Bostian, K., V. E. Burn, S. Jayachandran and D. J. Tipper 1983b. Yeast killer dsRNA plasmids are transcribed in vivo to produce full and partial-length plus-stranded RNAs. Nucleic Acids Research 4 (11), 1077–97.

    Google Scholar 

  • Bostian, K. A., Q. Elliot, H. Bussey, V. Burn, A. Smith and D. J. Tipper 1984. Sequence of the preprotoxin dsRNA gene of type 1 killer yeast: multiple processing events produce a two-component toxin. Cell 36, 741–51.

    CAS  Google Scholar 

  • Botstein, D. and R. W. Davis 1982. Principles and practice of recombinant DNA research with yeast. In The molecular biology of the yeast Saccharomyces. 11. Metabolism and gene expression, J.N. Strathern, E. W. Jones and J. R. Broach (eds), 607–36. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Brake, A. J., J. P. Merryweather, D. G. Coit, U. A. Heberlein, F. R. Valenzuela and P.J. Barr 1984. a-Factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the USA 81 (15), 4642–6.

    CAS  Google Scholar 

  • Brennan, V. E., L. A. Bobek and J. A. Bruenn 1981a. Yeast dsRNA viral transcriptase pulse products: identification of the transcript strand. Nucleic Acids Research 10, 5049–60.

    Google Scholar 

  • Brennan, V. E., L. Field, P. Cizdziel and J. A. Bruenn 1981b. Sequence of the 3’ ends of yeast dsRNA: proposed transcriptase and replicase initiation sites. Nucleic Acids Research 9, 4007–21.

    CAS  Google Scholar 

  • Brewer, B. J. and W. L. Fangman 1980. Professional inclusion of extrachromosomal genetic elements in yeast meiotic spores. Proceedings of the National Academy of Sciences of the USA 77 (9), 5380–4.

    CAS  Google Scholar 

  • Broach, J. R., Y.-Y. Li, L.-C. C. Wu and M. Jayaram 1983. Vectors for high-level, inducible expression of cloned genes in yeast. In Experimental manipulation of gene expression, M. Inouye (ed.), 83–117. New York: Academic Press.

    Google Scholar 

  • Bruenn, J. A. 1980. Virus-like particles of yeast. Annual Review of Microbiology 34, 49–68.

    CAS  Google Scholar 

  • Bruenn, J. A. and V. E. Brennan 1980. Yeast viral double-stranded RNAs have heterogeneous 3’ termini. Cell 19, 923–33.

    CAS  Google Scholar 

  • Bruenn, J. and B. Keitz 1976. The 5’ ends of yeast killer factor RNAs are pppGp. Nucleic Acids Research 3, 2427–37.

    CAS  Google Scholar 

  • Bruenn, J., L. Bobek, V. Brennan and W. Held 1980. Yeast viral double-stranded RNAs have heterogeneous 3’ termini. Cell 19, 923–33.

    CAS  Google Scholar 

  • Bruenn, J., K. Madura, A. Siegel, Z. Miner and M. Lee 1985. Long internal inverted repeat in a yeast viral double-stranded RNA. Nucleic Acids Research 13, 1575–91.

    CAS  Google Scholar 

  • Buck, K. W., P. Lloas and B. K. Street 1973. Virus particles in yeast. Biochemical Society Transactions 1, 1141–2.

    CAS  Google Scholar 

  • Bussey, H. 1972. Effects of yeast killer factor on sensitive cells. Nature New Biology 235, 73–5.

    CAS  Google Scholar 

  • Bussey, H. 1981. Physiology of killer factor in yeast. In Advances in microbial physiology, A. H. Rose and G. Morris (eds), 93–122. New York: Academic Press.

    Google Scholar 

  • Bussey, H. 1984. Yeast killer toxin and an immunity protein are processed from a composite precursor. Microbiological Science 1, 62–6.

    CAS  Google Scholar 

  • Bussey, H. and P. Meaden 1985. Selection and stability of yeast transformants expressing cDNA of an Ml killer toxin-immunity gene. Current Genetics 9, 285–91.

    CAS  Google Scholar 

  • Bussey, H. and D. Sherman 1973. Yeast killer factor: ATP leakage and coordinate inhibition of macromolecular synthesis in sensitive cells. Biochimica et Biophysica Acta 298, 868–75.

    CAS  Google Scholar 

  • Bussey, H. and N. Skipper 1975. Membrane-mediated killing of Saccharomyces cerevisiae by glycoproteins from Torulopsis glabrata. Journal of Bacteriology 124, 476–83.

    CAS  Google Scholar 

  • Bussey, H. and N. Skipper 1976. Killing of Torulopsis glabrata by Saccharomyces cerevisiae killer factor. Antimicrobial Agents and Chemotherapy 9 (2), 352–4.

    CAS  Google Scholar 

  • Bussey, H., D. Sherman and J. M. Somers 1973. Action of yeast killer factor: a resistant mutant with sensitive spheroplasts. Journal of Bacteriology 113, 1193–7.

    CAS  Google Scholar 

  • Bussey, H., D. Saville, K. Hutchins and R. G. E. Palfree 1979. Binding of yeast killer toxin to a cell wall receptor on sensitive Saccharomyces cerevisiae. Journal of Bacteriology 140, 888–92.

    CAS  Google Scholar 

  • Bussey, H., W. Sacks, D. Galley and D. Saville 1982. Yeast killer plasmid mutations affecting toxin secretion and activity and toxin immunity function. Molecular and Cellular Biology 2, 346–54.

    CAS  Google Scholar 

  • Bussey, H., O. Steinmetz and D. Saville 1983a. Protein secretion in yeast: two chromosomal mutants that oversecrete killer toxin in Saccharomyces cerevisiae. Current Genetics 7, 449–56.

    CAS  Google Scholar 

  • Bussey, H., D. Saville, D. Greene, D. J. Tipper and K. A. Bostian 1983b. Secretion of yeast killer toxin: processing of the glycosylated precursor. Molecular and Cellular Biology 3, 1362–70.

    CAS  Google Scholar 

  • Carlson, M. and D. Botstein 1982. Two differentially regulated mRNAs with different 5’ ends encode secreted and intracellular forms of yeast invertase. Cell 28, 145–54.

    CAS  Google Scholar 

  • Chan, S. J., C. Patzelt, J. R. Duguid, P. Quinn, A. Labrecque, B. Noyes, P. Keim, R. L. Heinrikson and D. F. Steiner 1979. Precursors in the biosynthesis of insulin and other peptide hormones. In From gene to protein, T. R. Russel, H. Bren, H. Faber and J. Schultz (eds), 361–78. New York: Academic Press.

    Google Scholar 

  • Chow, N. and A. J. Shatkin 1975. Blocked and unblocked 5’ termini in reovirus genome RNA. Journal of Virology 15, 1057–64.

    CAS  Google Scholar 

  • Clare, J. J. and S. G. Oliver 1979. The regulation of RNA synthesis in yeast IV [synthesis of double-stranded RNA]. Molecular and General Genetics 171, 161–6.

    CAS  Google Scholar 

  • Cleveland, D. W., S. G. Fisher, M. W. Kirschner and U. K. Laemmli 1977. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. Journal of Biological Chemistry 252, 1102–6.

    CAS  Google Scholar 

  • Cohn, M. S., C. W. Tabor, H. Tabor and R. B. Wickner 1978. Spermidine or spermine requirement for killer double-stranded RNA plasmid replication in yeast. Journal of Biological Chemistry 253, 5225–7.

    CAS  Google Scholar 

  • Davies, J. K. and P. Reeves 1975. Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group B. Journal of Bacteriology 123, 96–101.

    CAS  Google Scholar 

  • El-Sherbeini, M. and K. A. Bostian 1985. Infection of yeast protoplasts with the K1 and K2 dsRNA viruses. Abstracts of Cold Spring Harbor Symposium on the Molecular Biology of Yeast, 364.

    Google Scholar 

  • El-Sherbeini, M., E. A. Bevan and D. J. Mitchell 1983. Two biochemically and genetically different forms of L dsRNA of Saccharomyces cerevisiae exist: one form, L2, is correlated with the [HOK] plasmid. Current Genetics 7, 63–8.

    CAS  Google Scholar 

  • El-Sherbeini, M., D. J. Tipper, D. J. Mitchell and K. A. Bostian 1984. Virus-like particle capsid proteins encoded by different L double-stranded RNAs of Saccharomyces cerevisiae: their roles in maintenance of M double-stranded killer plas- mids. Molecular and Cellular Biology 4, 2818–27.

    CAS  Google Scholar 

  • Emr, S. D., R. Scheckman, M. C. Flessel and J. Thorner 1983. An MFal-SUC2 (a-factor-invertase) gene fusion for study of protein localisation and gene expression in yeast. Proceedings of the National Academy of Sciences of the USA 80, 7080–4.

    CAS  Google Scholar 

  • Esmon, B., P. Novick and R. Schekman 1981. Compartmentalized assembly of oligosaccharides on exported glycoproteins in yeast. Cell 25, 451–60.

    CAS  Google Scholar 

  • Extremera, A. L., I. Martin and E. Montoya 1982. A new killer toxin produced by Saccharomyces cerevisiae. Current Genetics 5, 17–19

    CAS  Google Scholar 

  • Field, L. J., L. A. Bobek, V. E. Brennan, J. D. Reilly and J. A. Bruenn 1982. There are at least two yeast viral double-stranded RNAs of the same size: an explanation for viral exclusion. Cell 31, 193–200.

    CAS  Google Scholar 

  • Fink, G. R. and C. A. Styles 1972. Curing of a killer factor in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the USA 69, 2846–9.

    CAS  Google Scholar 

  • Fitzgerald, M. and T. Shenk 1981. The sequence 5’-AAUAAA-3’ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24, 251–60.

    CAS  Google Scholar 

  • Fried, H. M. and G. R. Fink 1978. Electron microscopic heteroduplex analysis of‘killer’ double-stranded RNA species from yeast. Proceedings of the National Academy of Sciences of the USA 75, 4224–8.

    CAS  Google Scholar 

  • Furuichi, Y., S. Muthukrishnan and A. J. Shatkin 1975a. 5’-Terminal m7 G(5’)ppp(5’)Gmp in vivo: identification in reovirus genome. Proceedings of the National Academy of Sciences of the USA 72, 742–5.

    CAS  Google Scholar 

  • Furuichi, Y., M. Morgan, S. Muthukrishnan and A. J. Shatkin 1975b. Reovirus messenger RNA contains a methylated, blocked 5’-terminal structure, M7G(5’) ppp(5’)GmpCp. Proceedings of the National Academy of Sciences of the USA 72, 362–6.

    CAS  Google Scholar 

  • Garfinkel, D. J., J. D. Boeke and G. R. Fink 1985. Ty element transposition: reverse transcriptase and virus-like particles. Cell 42, 507–17.

    CAS  Google Scholar 

  • Guerry-Kopecko, P. and R. B. Wickner 1980. Isolation and characterization of temperature-sensitive mak mutants of Saccharomyces cerevisiae. Journal of Bacteriology 144, 1113–18.

    CAS  Google Scholar 

  • Hannig, E. M. and M. J. Leibowitz 1985. Structure and expression of the M2 genomic segment of a type 2 killer virus of yeast. Nucleic Acids Research 13, 4379–400.

    CAS  Google Scholar 

  • Hannig, E. M., D. J. Thiele and M. J. Leibowitz 1984. Saccharomyces cerevisiae killer virus transcripts contain template-coded polyadenylate tracts. Molecular and Cellular Biology 4, 101–9.

    CAS  Google Scholar 

  • Hannig, E. M., M. Leibowitz and R. B. Wickner 1985. On the mechanism of exclusion of M2 double-stranded RNA in Saccharomyces cerevisiae. Yeast 1, 57–65.

    CAS  Google Scholar 

  • Harris, M. S. 1978. Virus-like particles and double-stranded RNA from killer and nonkiller strains of Saccharomyces cerevisiae. Microbios 21, 161–76.

    CAS  Google Scholar 

  • Haylock, R. W. and E. A. Bevan 1981. Characterisation of the LdsRNA encoded mRNA of yeast. Current Genetics 4, 181–6.

    CAS  Google Scholar 

  • Henderson, R. C. A. 1983. D.Phil, thesis, Botany School, Oxford.

    Google Scholar 

  • Herring, A. J. and E. A. Bevan 1974. Virus-like particles associated with the double- stranded RNA species found in killer and sensitive strains of the yeast Saccharomyces cerevisiae. Journal of General Virology 22, 387–94.

    CAS  Google Scholar 

  • Herring, A. J. and E. A. Bevan 1977. Yeast virus-like particles possess a capsid- associated single-stranded RNA polymerase. Nature (London) 268, 464–6.

    CAS  Google Scholar 

  • Hinnen, A. and B. Meyhack 1982. Vectors for cloning in yeast. Current Topics in Microbiology and Immunology 96, 101–17.

    CAS  Google Scholar 

  • Hishinuma, F., K. Nakamura, K. Hirai, R. Nishizawa, N. Gunge and T. Maeda 1984. Cloning and nucleotide sequences of the linear DNA killer plasmids from yeast. Nucleic Acids Research 12, 7581–97.

    CAS  Google Scholar 

  • Hopper, J. E., K. A. Bostian, L. B. Rowe and D. J. Tipper 1977. Translation of the L-species dsRNA genome of the killer-associated virus-like particles of Saccharomyces cerevisiae. Journal of Biological Chemistry 252, 9010–17.

    CAS  Google Scholar 

  • Huang, A. S. 1977. Viral pathogenesis and molecular biology. Bacteriological Reviews 41, 811–21.

    CAS  Google Scholar 

  • Hunter, T. and J. I. Garrels 1977. Characterisation of the mRNAs for a, β and y actin. Cell 12, 767–81.

    CAS  Google Scholar 

  • Hutchins, K. and H. Bussey 1983. Cell wall receptor for yeast killer toxin: involvement of (1→6)-β -D-Glucan. Journal of Bacteriology 154, 161–9.

    CAS  Google Scholar 

  • Imamura, T., M. Kawamoto and Y. Takaoka 1974. Isolation and characterisation of killer-resistant mutants of Sake yeast. Journal of Fermentation Technology 52 (5), 300–5.

    CAS  Google Scholar 

  • Kagan, B. L. 1983. Mode of action of yeast killer toxins: channel formation in lipid bilayer membranes. Nature (London) 302, 709–11.

    CAS  Google Scholar 

  • Kane, W., D. Pietras and J. Bruenn 1979. The evolution of defective-interfering dsRNAs of the yeast killer virus. Journal of Virology 32, 692–6.

    CAS  Google Scholar 

  • Kaster, K. R., S. G. Burgett and T. D. Ingolia 1984. Hygromycin B resistance as dominant selectable marker in yeast. Current Genetics 8, 353–8.

    CAS  Google Scholar 

  • Kikuchi, Y., K. Hirai and F. Hishinuma 1984. The yeast linear DNA killer plasmids, pGKLl and pGKL2. possess terminally attached proteins. Nucleic Acids Research 12, 5685–92.

    CAS  Google Scholar 

  • Koltin, Y. 1977. Virus-like particles in Ustilago maydis: mutants with partial genomes. Genetics 86, 527–34.

    CAS  Google Scholar 

  • Koltin, Y. and J. S. Kandel 1978. Killer phenomenon in Ustilago maydis: the organization of the viral genome. Genetics 88, 267–76.

    CAS  Google Scholar 

  • Koltin, Y., I. Mayer and R. Steinlauf 1978. Killer phenomenon in Ustilago maydis: mapping and viral functions. Molecular and General Genetics 166, 181–6.

    CAS  Google Scholar 

  • Kopecky, A. L., C. P. Copeland and J. E. Lusk 1975. Viability of Escherichia coli treated with colicin K. Proceedings of the National Academy of Sciences of the USA 72, 4631–4.

    CAS  Google Scholar 

  • Koper-Zwarthoff, F. C. and J. F. Bol 1980. Nucleotide sequence of the putative recognition site for coat protein in the RNAs of alfalfa mosaic virus and tobacco streak virus. Nucleic Acids Research 8, 3307–18.

    CAS  Google Scholar 

  • Kotani, H., A. Shinmyo and T. Enatsu 1977. Killer toxin for sake yeast: properties and effects of adenosine 5’-diphosphate and calcium ions on killing action. Journal of Bacteriology 129, 640–50.

    CAS  Google Scholar 

  • Kozak, M. 1981. Possible role of the flanking nucleotides in the recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Research 9, 5233–52.

    CAS  Google Scholar 

  • Kyte, J. and R. F. Doolittle 1982. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157, 105–32.

    CAS  Google Scholar 

  • Lhoas, P. 1972. Electron micrographs of cells of Saccharomyces cerevisiae infected with double-stranded RNA virus from Aspergillus niger and Penicillium stoloniferum. Nature: New Biology 236, 86–7.

    CAS  Google Scholar 

  • Lolle, S., N. Skipper, H. Bussey and D. Y. Thomas 1984. The expression of cDNA clones of yeast Ml double-stranded RNA in yeast confers both killer and immunity phenotypes. EM BO Journal 3 (6), 1383–7.

    CAS  Google Scholar 

  • Long, M. S., B. L. Brizzard andS. R. De-Kloet 1982. Selective inhibition of yeast killer specific double-stranded RNA transcription in vitro. Biochemical and Biophysical Research Communications 108 (1), 31–5.

    CAS  Google Scholar 

  • Martin, I., A. L. Extremera and E. Montoya 1981. Interactions between pairs of plasmids related to killer character in yeast. Microbios Letters 18, 81–6.

    Google Scholar 

  • Maule, A. P. and P. D. Thomas 1973. Strains of yeast lethal to brewery yeasts. Journal of the Institute of Brewing 79, 137–41.

    Google Scholar 

  • McLaughlin, C. S., J. R. Warner, M. Edmonds, H. Nakazato and M. H. Vaughan 1973. Polyadenylic acid sequences in yeast messenger ribonucleic acid. Journal of Biological Chemistry 248, 1466–71.

    CAS  Google Scholar 

  • Mellor, J., M. H. Malim, K. Gull, M. F. Tuite, S. McCready, T. Dibbayawan, S. M. Kingsman and A. J. Kingsman 1985. Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast. Nature (London) 318, 583–6.

    CAS  Google Scholar 

  • Middelbeek, E. J., J. M. H. Hermans and C. Stumm 1979. Production, purification and properties of a Pichia kluyveri killer toxin. Antonie van Leeuwenhoek Journal of Microbiology and Serology 45, 437–50.

    CAS  Google Scholar 

  • Middelbeek, E. J., A. Q. H. Crutzen and G. D. Vogels 1980a. Effects of potassium and sodium ions on the killing action of a Pichia kluyveri toxin in cells of Saccharomyces cerevisiae. Antimicrobial Agents and Chemotherapy 18, 519–24.

    CAS  Google Scholar 

  • Middelbeek, E. J., J. M. H. Hermans, C. Stumm and H. L. Muytjens 1980b. High incidence of sensitivity to yeast killer toxins among Candida and Torulopsis isolates of human origin. Antimicrobial Agents and Chemotherapy 17, 350–4.

    CAS  Google Scholar 

  • Middelbeek, E. J., J. G. W. H. Peters, C. Stumm and G. D. Vogels 1980c. Properties of a Cryptococcus laurentiae killer toxin and conditional killing effect of the toxin on Cryptococcus albidus. FEMS Microbiology Letters 9, 81–4.

    CAS  Google Scholar 

  • Middelbeek, E. J., C. Stumm and G. D. Vogels 1980d. Effects of a Pichia kluyveri killer toxin on sensitive cells. Antonie van Leeuwenhoek Journal of Microbiology and Serology 46, 205–150

    CAS  Google Scholar 

  • Middelbeek, E. J., H. H. A. M. van der Laar, J. M. H. Hermans, C. Stumm and G. D. Vogels 1980e. Physiological conditions affecting the stability of S. cerevisiae to a Pichia kluyveri killer toxin and energy requirement for toxin action. Antonie van Leeuwenhoek Journal of Microbiology and Serology 46, 483–97.

    CAS  Google Scholar 

  • Mitchell, D. J. 1974. The correlation between nucleic acid differences and the killer phenotypes in yeast. Ph.D. thesis, University of London. 34 4–5.

    Google Scholar 

  • Mitchell, D. J. and E. A. Bevan 1983. ScV ‘killer’ viruses in yeast. In Yeast genetics (fundamental and applied aspects), J. F. T. Spencer, D. M. Spencer and A. R. W. Smith (eds), 371–419. New York: Springer-Verlag.

    Google Scholar 

  • Mitchell, D. J., A. J. Herring and E. A. Bevan 1976a. The genetic control of dsRNA virus-like particles associated with Saccharomyces cerevisiae killer yeast. Heredity 37 (1), 129–34.

    CAS  Google Scholar 

  • Mitchell, D. J., A. J. Herring and E. A. Bevan 1976b. Virus uptake in yeasts. In Microbial and plant protoplasts, J. F. Peberdy, A. H. Rose, H. J. Rogers and E. C. Cocking (eds), 91–105. London: Academic Press.

    Google Scholar 

  • Miura, K. I., K. Watanake and M. Sugura 1974. 5’-terminal nucleotide sequences of the double-stranded RNA of silkworm cytoplasmic polyhedrosis virus. Journal of Molecular Biology 86, 31–48.

    Google Scholar 

  • Montell, C., E. F. Fisher, M. H. Caruthers and A. J. Berk 1983. Inhibition of RNA cleavage but not polyadenylation by a point mutation in mRNA 3’ consensus sequence AAUAAA. Nature (London) 305, 600–5.

    CAS  Google Scholar 

  • Morace, G., C. Archibusacchi, M. Sesito and L. Polonelli 1984. Strain differentiation of pathogenic yeasts by the killer system. Mycopathologia 84 (2–3), 81–6.

    CAS  Google Scholar 

  • Naumov, G. I. and T. I. Naumova 1973. Comparative genetics of yeast. XIII. Comparative study of killer strains of Saccharomyces from different collections. Genetika 9, 140–5.

    Google Scholar 

  • Naumov, G. I., L. V. Tyurina, N. I. Bur’Yan and T. I. Naumova 1973. Wine-making, an ecological niche of type K2 killer Saccharomyces. Biologicheskie Nauki 16, 103–7.

    Google Scholar 

  • Nesterova, G. F. 1974. Infection of germinating spores of Saccharomyces cerevisiae with cytoplasmic factor k. Genetika 10, 78–82.

    Google Scholar 

  • Nesterova, G. F., L. V. Semykina and A. A. Filatov 1981. A study of the killer plasmid mutants isolated by treatment with 5-fluorouracil. Genetika 17, 391–8.

    CAS  Google Scholar 

  • Newman, A. M., S. G. Elliott, C. S. McLaughlin, P. A. Sutherland and R. C. Warner 1981. Replication of double-stranded RNA of the virus-like particles in Saccharomyces cerevisiae. Journal of Virology 38, 263–71.

    CAS  Google Scholar 

  • Nomoto, H., K. Kitano, T. Shimazaki, K. Kodama and S. Hara 1984. Distribution of killer yeasts in the genus Hansenula. Agricultural and Biological Chemistry 48 (3), 807–9.

    Google Scholar 

  • Novick, P. and R. Schekman 1979. Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the USA 76, 1858–62.

    CAS  Google Scholar 

  • Novick, P., C. Field and R. Schekman 1980. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–10.

    CAS  Google Scholar 

  • Novick, P., S. Ferro and R. Schekman 1981. Order of events in the yeast secretory pathway. Cell 25, 461–9.

    CAS  Google Scholar 

  • Oliver, S. G., S. J. McCready, C. Holm, P. A. Sutherland, C. S. McLaughlin and B. S. Cox 1977. Biochemical and physiological studies of the yeast virus-like particle. Journal of Bacteriology 130, 1303–9.

    CAS  Google Scholar 

  • Olsnes, S. and A. Pihl 1973. Isolation and properties of abrin, a toxic protein inhibiting protein synthesis. Evidence for different biological functions of its two constituent- peptide side chains. European Journal of Biochemistry 35, 179–85.

    CAS  Google Scholar 

  • Palfree, R. G. E. and H. Bussey 1979. Yeast killer toxin: purification and characterisation of the protein toxin from Saccharomyces cerevisiae. European Journal of Biochemistry 93, 487–93.

    CAS  Google Scholar 

  • Parent, S. A., C. M. Feinmore and K. A. Bostian 1985. Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast 1, 83–138.

    CAS  Google Scholar 

  • Perrault, J. 1981. Origin and replication of defective interfering particles. Current Topics in Microbiology and Immunology 93, 151–207.

    CAS  Google Scholar 

  • Pfeiffer, P. and F. Radler 1984. Comparison of the killer toxin of several yeasts and the purification of a toxin of type K2. Archives of Microbiology 137 (4), 357–61.

    CAS  Google Scholar 

  • Philliskirk, G. and T. W. Young 1975. The occurrence of killer character in yeasts of various genera. Antonie van Leeuwenhoek Journal of Microbiology and Serology 41, 147–51.

    CAS  Google Scholar 

  • Pietras, D. F. and J. A. Bruenn 1976. The molecular biology of yeast killer factor. International Journal of Biochemistry 7, 173–9.

    CAS  Google Scholar 

  • Polonelli, L., C. Archibusacchi, M. Sesito and G. Morace 1983. Killer system: a simple method for differentiating Candida albicans strains. Journal of Clinical Microbiology 17, 774–80.

    CAS  Google Scholar 

  • Pugsley, A. P. 1983. Colicin E4-CT9 is proteolytically degraded after discharge from producing cells in liquid cultures. Journal of General Microbiology 129, 833–40.

    CAS  Google Scholar 

  • Radler, F., P. Pfeiffer and M. Dennert 1985. Killer toxins in new isolates of the yeasts Hanseniaspora uvarum and Pichia kluyveri. FEMS Microbiology Letters 29 (3), 269–72.

    CAS  Google Scholar 

  • Reilly, J. D., J. Bruenn and W. Held 1984. The capsid polypeptides of the yeast viruses. Biochemical and Biophysical Research Communications 121, 619–25.

    CAS  Google Scholar 

  • Ridley, S. P. and R. B. Wickner 1983. Defective interference in the killer system of Saccharomyces cerevisiae. Journal of Virology 45, 800–12.

    CAS  Google Scholar 

  • Ridley, S. P., S. S. Sommer and R. B. Wickner 1984. Super killer mutations in Saccharomyces cerevisiae suppress exclusion of M-2 double-stranded RNA by L-A- HN and confer cold sensitivity in the presence of M and L-A-HN. Molecular and Cellular Biology 4, 761–70.

    CAS  Google Scholar 

  • Rogers, D. and E. A. Bevan 1978. Group classification of killer yeasts based on cross-reactions between strains of different species and origin. Journal of General Microbiology 105, 199–202.

    Google Scholar 

  • Rosini, G. 1985. Interaction between killer strains of Hansenula anomala var. anomala and Saccharomyces cerevisiae yeast species. Canadian Journal of Microbiology 31, 300–2.

    Google Scholar 

  • Saksena, K. N. and P. A. Lemke 1978. Viruses in fungi. In Comprehensive virology, H. Fraenkel-Conrat and R. R. Wagner (eds), Vol. 12, 102–43. New York: Plenum.

    Google Scholar 

  • Schekman, R. and P. Novick 1982. The secretory process and yeast cell-surface assembly. In The molecular biology of the yeast Saccharomyces. 11. Metabolism and gene expression, J. N. Strathern, E. W. Jones and J. R. Broach (eds), 361 - 93. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Schlein, S. J., B. L. Kagan and A. Finkelstein 1978. Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature (London) 276, 159–63.

    Google Scholar 

  • Sclafani, R. A. and W. L. Fangman 1984. Conservative replication of double-stranded RNA in Saccharomyces cerevisiae by displacement of progeny single strands. Molecular and Cellular Biology 4, 1618–26.

    CAS  Google Scholar 

  • Silverstein, S. C., J. K. Christman and G. Acs 1976. The reovirus replicative cycle. Annual Review of Biochemistry 45, 375–408.

    CAS  Google Scholar 

  • Singh, A. and T. R. Manney 1974. Genetic analysis of mutations affecting growth of Saccharomyces cerevisiae at low temperature. Genetics 77, 651–9.

    CAS  Google Scholar 

  • Singh, A., J. M. Logovoy, W. J. Kohr and L. J. Perry 1984. Synthesis, secretion and processing of a-factor-interferon fusion proteins in yeast. Nucleic Acids Research 12, 8927–38.

    CAS  Google Scholar 

  • Skipper, N. 1983. Synthesis of double-stranded cDNA transcript of the killer toxin- coding region of the yeast Ml double-stranded RNA. Biochemical and Biophysical Research Communications 114, 518–25.

    CAS  Google Scholar 

  • Skipper, N. and H. Bussey 1977. Mode of action of yeast toxins: energy requirement for Saccharomyces cerevisiae killer toxin. Journal of Bacteriology 129, 668–77.

    CAS  Google Scholar 

  • Skipper, N., D. Y. Thomas and P. C. K. Lau 1984. Cloning and sequencing of the preprotoxin-coding region of the yeast Ml double-stranded RNA. EM BO Journal 3 (1), 107–11.

    CAS  Google Scholar 

  • Somers, J. M. 1973. Isolation of suppressive sensitive mutants from killer and neutral strains of Saccharomyces cerevisiae. Genetics 74, 571–9.

    CAS  Google Scholar 

  • Somers, J. M. and E. A. Bevan 1969. The inheritance of the killer character in yeast. Genetic Research Cambridge 13, 17–83.

    Google Scholar 

  • Sommer, S. S. and R. B. Wickner 1982a. Yeast L dsRNA consists of at least three distinct RNAs; evidence that the non-Mendelian genes [HOK], [NEX] and [EXL] are on one of these dsRNAs. Cell 31, 429–41.

    CAS  Google Scholar 

  • Sommer, S. S. and R. B. Wickner 1982b. Co-curing of plasmids affecting killer double-stranded RNAs of Saccharomyces cerevisiae: [HOK], [NEX], and the abundance of L are related and further evidence that M1 requires L. Journal of Bacteriology 150, 545–51.

    CAS  Google Scholar 

  • Sommer, S. S. and R. B. Wickner 1984. Double-stranded RNAs that encode killer toxins in Saccharomyces cerevisiae: unstable size of M double-stranded RNA and inhibition of M2 replication by Mx. Molecular and Cellular Biology 4, 1747–53.

    CAS  Google Scholar 

  • Sor, F. and H. Fukuhara 1985. Structure of a linear plasmid of the yeast Kluyveromyces lactis; compact organization of the killer genome. Current Genetics 9, 147–55.

    CAS  Google Scholar 

  • Sripati, C. E., Y. Groner and J. R. Warner 1976. Methylated, blocked 5’ termini of yeast mRNA. Journal of Biological Chemistry 251, 2898–904.

    CAS  Google Scholar 

  • Sriprakash, K. S. and C. Batum 1984. Possible chromosomal location for the killer determinant in Torulopsis glabrata. Current Genetics 8, 115–19.

    CAS  Google Scholar 

  • Stark, M. J. R., A. J. Mileham, M. A. Romanos and A. Boyd 1984. Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Research 12, 6011–30.

    CAS  Google Scholar 

  • Stewart, G. G., T. E. Goring and I. Russell 1977. Can a genetically manipulated yeast strain produce palatable beer? Journal of the American Society of Brewing Chemistry 35, 168–78.

    CAS  Google Scholar 

  • Stoltzfus, C. M., A. J. Shatkin and A. K. Banerjee 1973. Absence of polyadenylic acid from reovirus messenger ribonucleic acid. Journal of Biological Chemistry 248, 7993–8.

    CAS  Google Scholar 

  • Struhl, K. 1983. The new yeast genetics. Nature (London) 305, 391–7.

    CAS  Google Scholar 

  • Stumm, C., J. M. H. Hermans, E. J. Middelbeek, A. F. Croes and G. J. M. L. de Vries 1977. Killer-sensitive relationships in yeasts from natural habitats. Antonie van Leeuwenhoek Journal of Microbiology and Serology 43, 125–8.

    CAS  Google Scholar 

  • Sugisaki, Y., N. Gunge, K. Sakaguchi, M. Yamasaki and G. Tamura 1984. Characterisation of a novel killer toxin encoded by a double-stranded linear DNA plasmid of Kluyveromyces lactis. European Journal of Biochemistry 141, 241–5.

    CAS  Google Scholar 

  • Sweeney, T. K., A. Tate and G. R. Fink 1976. A study of the transmission and structure of double-stranded RNAs associated with the killer phenomenon in Saccharomyces cerevisiae. Genetics 84, 28–42.

    Google Scholar 

  • Taniguchi, T., M. Palmieri and C. Weissmann 1978. Qβ DNA-containing hybrid plasmids giving rise to Qβ phage formation in the bacterial host. Nature (London) 274, 223–8.

    CAS  Google Scholar 

  • Thiele, D.J. and M.J. Leibowitz 1982. Structural and functional analysis of separated strands of killer double-stranded RNA of yeast. Nucleic Acids Research 10, 6903–18.

    CAS  Google Scholar 

  • Thiele, D. J., R. W. Wang and M. J. Leibowitz 1982. Separation and sequence of the 3’ termini of M double-stranded RNA from killer yeast. Nucleic Acids Research 10, 1661–78.

    CAS  Google Scholar 

  • Thiele, D. J., E. M. Hannig and M. J. Leibowitz 1984a. Multiple L double-stranded RNA species of Saccharomyces cerevisiae: evidence for separate encapsidation. Molecular and Cellular Biology 4, 92–100.

    CAS  Google Scholar 

  • Thiele, D. J., E. M. Hannig and M. J. Leibowitz 1984b. Genome structure and expression of a defective interfering mutant of the killer virus of yeast. Virology 137, 20–31.

    CAS  Google Scholar 

  • Thrash, C., K. Voelkel, S. di Nardo and R. Sternglanz 1984. Identification of Saccharomyces cerevisiae mutants deficient in DNA topoisomerase 1 activity. Journal of Biological Chemistry 259, 1375–7.

    CAS  Google Scholar 

  • Tipper, D. J. and K. A. Bostian 1984. Double-stranded ribonucleic acid killer systems in yeasts. Microbiological Reviews 48 (2), 125–56.

    CAS  Google Scholar 

  • Toh-e, A. and Y. Sahashi 1985. The PET18 locus of Saccharomyces cerevisiae: a complex locus containing multiple genes. Yeast 1, 159–71.

    CAS  Google Scholar 

  • Toh-e, A. and R. B. Wickner 1979. A mutant killer plasmid whose replication depends on a chromosomal ‘superkiller’ mutation. Genetics 91, 673–82.

    CAS  Google Scholar 

  • Toh-e, A. and R. B. Wickner 1980. ‘Superkiller’ mutations suppress chromosomal mutations affecting double-stranded RNA killer plasmid replication in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the USA 77, 527–30.

    CAS  Google Scholar 

  • Toh-e, A., P. Guerry and R. B. Wickner 1978. Chromosomal superkiller mutants of Saccharomyces cerevisiae. Journal of Bacteriology 136, 1002–7.

    CAS  Google Scholar 

  • Tyagi, A. K., R. B. Wickner, C. W. Tabor and H. Tabor 1984. Specificity of polyamine requirements for the replication and maintenance of different double-stranded RNA plasmids in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the USA 81, 1149–53.

    CAS  Google Scholar 

  • Tzen, J. C., J. M. Sauers and D. J. Mitchell 1974. A dsRNA analysis of suppressive sensitive mutants of ‘killer’ Saccharomyces cerevisiae. Heredity 33, 132 (abstr.).

    Google Scholar 

  • Vodkin, M. H. and G. R. Fink 1973. A nucleic acid associated with a killer strain of yeast. Proceedings of the National Academy of Sciences of the USA 70, 1069–72.

    CAS  Google Scholar 

  • Vodkin, M., F. Katterman and G. R. Fink 1974. Yeast killer mutants with altered double-stranded ribonucleic acid. Journal of Bacteriology 117, 681–6.

    Google Scholar 

  • Webster, T. D. and R. C. Dickson 1983. Direct selection of Saccharomyces cerevisiae resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin resistance gene of Tn903. Gene 26, 243–52.

    CAS  Google Scholar 

  • Welsh, J. D. and M. J. Leibowitz 1980. Transcription of killer virion double-stranded RNA. Nucleic Acids Research 8, 2365–75.

    CAS  Google Scholar 

  • Welsh, J. D., M. J. Leibowitz and R. B. Wickner 1980. Virion DNA-dependent RNA polymerase from Saccharomyces cerevisiae. Nucleic Acids Research 8, 2349–63.

    CAS  Google Scholar 

  • Wesolowski, M. and R. B. Wickner 1984. Two new double-stranded RNA molecules showing non-Mendelian inheritance and heat inducibility in Saccharomyces cerevisiae. Molecular and Cellular Biology 4, 181–7.

    CAS  Google Scholar 

  • Wickner, R. B. 1974a. ‘Killer character’ of Saccharomyces cerevisiae: curing by growth at elevated temperature. Journal of Bacteriology 117, 1356–7.

    CAS  Google Scholar 

  • Wickner, R. B. 1974b. Chromosomal and nonchromosomal mutations affecting the ‘killer character’ of Saccharomyces cerevisiae. Genetics 76, 423–32.

    CAS  Google Scholar 

  • Wickner, R. B. 1976. Mutants of the killer plasmid of Saccharomyces cerevisiae dependent on chromosomal diploidy for expression and maintenance. Genetics 82, 273–85.

    CAS  Google Scholar 

  • Wickner, R. B. 1977. Deletion of mitochondrial DNA bypassing a chromosomal gene needed for maintenance of the killer plasmid of yeast. Genetics 87, 441–52.

    CAS  Google Scholar 

  • Wickner, R. B. 1978. Twenty-six chromosomal genes needed to maintain the killer double-stranded RNA plasmid of Saccharomyces cerevisiae. Genetics 88, 419–25.

    CAS  Google Scholar 

  • Wickner, R. B. 1979. The killer double-stranded RNA plasmids of yeast. Plasmid 2, 303–22.

    CAS  Google Scholar 

  • Wickner, R. B. 1980. Plasmids controlling exclusion of the K2 killer double-stranded RNA plasmid of yeast. Cell 21, 217–26.

    CAS  Google Scholar 

  • Wickner, R. B. 1981. Killer systems in Saccharomyces cerevisiae. In Molecular biology of the yeast Saccharomyces cerevisiae: life cycle and inheritance, J. N. Strathern, E. W. Jones and J. R. Broach (eds), 415–44. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Wickner, R. B. 1983a. Genetic control of replication of the double-stranded RNA segments of the killer systems in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics 222 (1), 1–11.

    CAS  Google Scholar 

  • Wickner, R. B. 1983b. Killer systems in Saccharomyces cerevisiae: 3 distinct modes of exclusion of M2 double-stranded RNA by 3 species of double-stranded RNA, Ml, L-A-E and L-A-HN. Molecular and Cellular Biology 3, 654–61.

    CAS  Google Scholar 

  • Wickner, R. B. andM. J. Leibowitz 1976a. Chromosomal genes essential for replication of a double-stranded RNA plasmid of Saccharomyces cerevisiae: the killer character of yeast. Journal of Molecular Biology 105, 427–43.

    CAS  Google Scholar 

  • Wickner, R. B. andM. J. Leibowitz 1976b. Two chromosomal genes required for killing expression in killer strains of Saccharomyces cerevisiae. Genetics 82, 429–42.

    CAS  Google Scholar 

  • Wickner, R. B. and M. J. Leibowitz 1977. Dominant chromosomal mutation by-passing chromosomal genes needed for killer RNA plasmid replication in yeast. Genetics 87, 453–69.

    CAS  Google Scholar 

  • Wickner, R. B. and M. J. Leibowitz 1979. mak mutants of yeast: mapping and characterisation. Journal of Bacteriology 140, 154–60.

    CAS  Google Scholar 

  • Wickner, R. B. and A. Toh-e 1982. [HOK], a new yeast non-Mendelian trait, enables a replication-defective killer plasmid to be maintained. Genetics 100, 159–74.

    Google Scholar 

  • Wickner, R. B., F. Boutelet and F. Hilger 1983. Evidence for a new chromosome in Saccharomyces cerevisiae. Molecular and Cellular Biology 3, 415–20.

    CAS  Google Scholar 

  • Wickner, R. B., S. P. Ridley, H. M. Fried and S. G. Ball 1982. Ribosomal protein L3 is involved in replication or maintenance of the killer double-stranded RNA genome of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the USA 79, 4706–8.

    CAS  Google Scholar 

  • Widgerson, M. and Y. Koltin 1982. Dual toxin specifications and the exclusion relations among the Ustilago dsRNA viruses. Current Genetics 5, 127–36.

    Google Scholar 

  • Woods, D. R. and E. A. Bevan 1968. Studies on the nature of the killer factor produced by Saccharomyces cerevisiae. Journal of General Microbiology 51, 115–26.

    CAS  Google Scholar 

  • Young, T. W. and M. Yagiu 1978. A comparison of the killer character in different yeasts and its classification. Antonie van Leeuwenhoek Journal of Microbiology and Serology 44, 59–77.

    CAS  Google Scholar 

  • Zakian, V. A.,D. W. Wagner and W. L. Fangman 1981. Yeast L-dsRNA issynthesised during the G1 phase but not the S phase of the cell cycle. Molecular and Cellular Biology 1, 673–9.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. R. Berry, G. G. Stewart and I. Russell

About this chapter

Cite this chapter

Mitchell, D.J., Bevan, E.A. (1987). dsRNA killer systems in yeast. In: Berry, D.R., Russell, I., Stewart, G.G. (eds) Yeast Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3119-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3119-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7903-7

  • Online ISBN: 978-94-009-3119-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics