Skip to main content

Some size relationships in phytoflagellate motility

  • Chapter
Flagellates in Freshwater Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 45))

Abstract

Data from the literature are used to assess some hypothesised adaptive advantages of the flagellate life form among phytoplankton. Possible advantages include increased nutrient uptake by movement through a homogeneous medium as opposed to exploitation of spatial hetrogeneity of the environment. Maximal migrational amplitudes and maximal swimming velocities of phytoflagellates were compared to body size. Both were found to increase with size. Relative amplitudes and relative velocities, however, were found to decrease with size. Hydrophysical considerations show that additional gain of nutrients by swimming through a homogeneous medium is only minimal for small flagellates at their attainable swimming velocities. It is suggested that exploitation of environmental heterogeneity in nutrient distribution may be one of the most important advantages for flagellates over coccoid algae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berg, H. C. &E. M. Purcell, 1977. Physics of chemoreception. Biophys. J. 20: 193–219.

    Article  PubMed  CAS  Google Scholar 

  • Berman, T. &W. Rodhe, 1971. Distribution and migration of Peridinium in Lake Kinneret. Mitt. int. Ver. Limnol. 19: 266–276.

    Google Scholar 

  • Blasco, D., 1978. Observations of the diel migration of marine dinoflagellates of the Baja California coast. Mar. Biol. 46: 41–47.

    Article  Google Scholar 

  • Frempong, E., 1984. A seasonal sequence of diel distribution patterns for the planktonic flagellate Ceratium hirundunella in an eutrophic lake. Freshwat. Biol. 14: 401–422.

    Article  Google Scholar 

  • Gavis, J., 1976. Munk and Riley revisted: nutrient diffusion trans port and rates of phytoplankton growth. J. Mar. Res. 34: 161–179.

    Google Scholar 

  • Goldman, J. C, 1984. Conceptual role for microaggregates in pelagic waters. Bull. Mar. Sci. 35: 462–476.

    Google Scholar 

  • Goldman, J. C., J. J. McCarthy &D. G. Peavey, 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215.

    Article  CAS  Google Scholar 

  • Hasle, G. R., 1950. Phototactic vertical migration in marine dinoflagellates. Oikos 2: 162–175.

    Article  Google Scholar 

  • Ilmavirta, V., 1974. Diel periodicity in the phytoplankton community of the oligotrophic lake Pääjärvi, southern Finland. I. Phytoplanktonic primary production and related factors. Ann. bot. fenn. 11: 136–177.

    Google Scholar 

  • Jackson, G. A., 1980. Phytoplankton growth and Zooplankton grazing in oligotrophic oceans. Nature 284: 439–441.

    Article  Google Scholar 

  • Kilham, S. S., 1986. Dynamics of Lake Michigan natural phytoplankton communities in continuous cultures along a Si:P loading gradient. Can. J. Fish. Aqu. Sci. 43: 351–360.

    Article  CAS  Google Scholar 

  • Knisely, K. &W. Geller, 1986. Selective feeding of four Zooplankton species on natural lake phytoplankton. Oecologia 96: 86–94.

    Article  Google Scholar 

  • Lund, J. W. G., 1963. A rarely recorded but very common British alga. Rhodomonas minuta Skuja. Brit. Phycol. Bull. 2: 133–139.

    Article  Google Scholar 

  • Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1: 493 -509.

    Google Scholar 

  • Munk, W. H. &G. A. Riley, 1952. Absorption of nutrients by aquatic plants. J. Mar. Res. 11: 215–240.

    Google Scholar 

  • Nauwerck, A., 1963. Die Beziehungen zwischen Zooplankton und Phytoplankton im See Erken. Symb. Bot. Uppsal. 17: 1–163.

    Google Scholar 

  • Peters, R. H., 1983. The ecological implications of body size. Cambridge Univ. Press. 329 pp.

    Google Scholar 

  • Purcell, E. M., 1977. Life at low Reynolds numbers. Amer. J. Phys. 45: 3–11.

    Article  Google Scholar 

  • Raven, J. A. &K. Richardson, 1984. Dinophyte flagella: a cost-benefit analysis. New Phytol. 98: 259–276.

    Article  Google Scholar 

  • Salonen, K., R. I. Jones &L. Arvola, 1984. Hypolimnetic phosphorus retrieval by diet vertical migrations of lake phytoplankton. Freshwat. Biol. 14: 431–438.

    Article  CAS  Google Scholar 

  • Sibley, T. H., P. L. Herrgesell &A. W. Knight, 1974. Density dependent vertical migration in the freshwater dinoflagellate Peridinium penardii. J. Phycol. 10: 475–477.

    Google Scholar 

  • Sjoblad, R. D., I. Chet &R. Mitchell, 1978. Quantitative assay for algal Chemotaxis. Appl. Environ. Microbiol. 36: 847–850.

    PubMed  CAS  Google Scholar 

  • Smith, R. E. &J. Kalff, 1983. Competition for phosphorus among co-occurring freshwater phytoplankton. Limnol. Oceanogr. 28: 448–464.

    Article  CAS  Google Scholar 

  • Soeder, C. J., 1967. Tagesperiodische Wanderungen bei begeis-selten Planktonalgen. Umschau 1967: 338

    Google Scholar 

  • Sommer, U, 1982. Vertical niche separation between two closely related planktonic flagellate species (Rhodomonas lens and Rhodomonas minuta v. nannoplanctica). J. Plankton Res. 4:137–142.

    Article  Google Scholar 

  • Sommer, U., 1983. Nutrient competition between phytoplankton species in multispecies chemostat experiments. Arch. Hydrobi-ol. 96: 399–416.

    Google Scholar 

  • Sommer, U. &Z. M. Gliwicz, 1986. Long range vertical migration of Volvox in tropical Lake Cahora Bassa (Mozambique). Lim-nol. Oceanogr. 31: in press.

    Google Scholar 

  • Sournia, A., 1982. Form and function in marine phytoplankton. Biol. Rev. 57: 347–394. Throndsen, J., 1973. Motility in some marine nanoplankton flagellates. Norw. J. Zool. 21: 193–200.

    Article  Google Scholar 

  • Tilzer, M. M., 1973. Diurnal periodicity in the phytoplankton assemblage of a high mountain lake. Limnol. Oceanogr. 18: 15–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roger I. Jones Veijo Ilmavirta

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sommer, U. (1988). Some size relationships in phytoflagellate motility. In: Jones, R.I., Ilmavirta, V. (eds) Flagellates in Freshwater Ecosystems. Developments in Hydrobiology, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3097-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3097-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7892-4

  • Online ISBN: 978-94-009-3097-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics