Skip to main content

Meteorological and Chemical Factors Influencing Cloudwater Composition in a Non-Precipitating, Liquid-Water Updraft

  • Chapter
Acid Deposition at High Elevation Sites

Part of the book series: NATO ASI Series ((ASIC,volume 252))

Abstract

An aqueous chemical model has been combined with an entraining updraft model to predict cloudwater composition above cloud base. Meteorological factors such as liquid water content, entrainment, pressure and temperature were allowed to vary as they might in a cloudy environment. Chemical reactions producing sulphuric acid, formic acid and hydrogen peroxide (H2O2) are extremely sensitive to the microphysical, dynamical, and radiative properties within a cloud. Several sulphate production pathways are sensitive to cloudwater pH, which is largely determined by sulphate aerosol concentration and cloud liquid water content. Hydrogen peroxide production may occur in both the gas and aqueous phase, and is sensitive to the amount of light available to initiate photochemical reactions. Near cloud base, H2O2 may be rapidly destroyed by SO2 in polluted areas. At higher cloud levels, where light intensities are higher and SO2 concentrations are usually lower, H2O2 may be produced at rates of up to 0.5 ppb h~l. Vertical or horizontal variations in meteorological factors alone will produce significant changes in cloudwater composition. Entrainment of cleaner mid-tropospheric air, pressure reductions, and increases in liquid water content lead to a decrease in solute concentrations in cloudwater. In contrast, reductions in temperature and aqueous-phase acid generation cause solute concentrations to increase in cloudwater. At high altitude sites, the composition of cloudwater will vary significantly with altitude. Near cloud base, concentrations of sulphate and nitrate in cloudwater will probably be highest, although cloud liquid water contents and droplet sizes will be lower. At higher elevations above cloud base, liquid water contents and drop sizes are larger, while solute concentrations may be lower. These model estimates suggest that several chemical, cloud-dynamical and cloud-microphysical parameters must be well characterised in order to predict cloudwater composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, G.E. and Boag, J.W. 1964. ’Spectroscopic studies of the OH radical’. Proc. Chem Soc. 112.

    Google Scholar 

  • Anbar, M. and Neta, P. 1967. ’A compilation of specific bimolecular rate constants for the reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with inorganic and organic compounds in aqueous solution’. Int. J. Appl. Rad. Isotopes 18, 493–523.

    Article  Google Scholar 

  • Behar, D., Czapski, G. and Duchovny, I. 1970. ’Carbonate radical flash photolysis and pulse radiolosis of aqueous carbonate solutions’. J. Physc. Chem. 74, 2206–2210.

    Article  Google Scholar 

  • Berdnikov, V.M. and Bazhin, N.M. 1970. ’Oxidation-reduction potentials of certain inorganic radicals in aqueous solutions’. Russian J. Phys. Chem. 44, 395–398.

    Google Scholar 

  • Bielski, B.H.J. 1978. ’Re-evaluation of the spectral and linetic properties of HO2 and 02-free radicals’. Photochem. Photobiol. 28, 645–649.

    Article  Google Scholar 

  • Boyce, S.D. and Hoffmann, M.R. 1984. ’Kinetics and mechanism of the formation of hydroxymethanesulphonic acid at low pH’. J. Phys. Chem. 88, 4740–4746.

    Article  Google Scholar 

  • Chameides, W.L. 1984. ’The photochemistry of a remote marine stratiform cloud’. J. Geophys. Res. 89, 4739–4755.

    Article  Google Scholar 

  • Chameides, W.L. 1986. ’Possible role of NO3 in the night-time chemistry of a cloud’. J. Geophys. Res. 91, 5331–5337.

    Article  Google Scholar 

  • Christensen, H., Sehested, K. and Corfitzen, H. 1982. Reactions of hydroxyl radical with hydrogen peroxide at ambient and elevated temperatures’. J. Phys. Chem. 86, 1588–1590.

    Article  Google Scholar 

  • Clegg, S.L. and Brimblecombe, P. 1985. ’Potential degassing of hydrogen chloride from acidified sodium chloride droplets’. Atmos. Environ. 19, 465–470.

    Article  Google Scholar 

  • Frahataziz, and Ross, A.B. 1977. ’Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxy radical and perhydroxyl radical and their radical ions. Rept. # NSRDS-NBS-59, National Bureau of Standards Washington DC, USA.

    Google Scholar 

  • Graedel, T.E. and Goldberg, K.I. 1983. ’Kinetic studies of raindrop chemistry. 1: Inorganic and organic processes’. J. Geophys. Res. 88, 10865–10882.

    Article  Google Scholar 

  • Hagesawa, K. and Neta, P. 1978. ’Rate constants and mechanisms of reaction for CI2 radicals’. J.Phys. Chem. 82, 854–857.

    Article  Google Scholar 

  • Hayon, E., Treinin, A. and Wilf, J. 1972. ’Electronic spectra, photochemistry and autoxidation mechanism of the sulphite-bisulphite pyrosulphite systems: The SO2, SO3, SO4 and SO5 radicals’. J. Am. Chem. Soc. 94, 47–57.

    Article  Google Scholar 

  • Hill, T.A. and Choularton, T.W. 1985. ‘An airborne study of the microphysical structure of cumulus clouds’. Quart. J. R. Met. Soc. 111, 517–544.

    Article  Google Scholar 

  • Huie, R.E. and Neta, P. 1984. ’Chemical behaviour of SO3’ and SO5- radicals in aqueous solutions’. J. Phys. Chem. 88, 5665–5669.

    Article  Google Scholar 

  • Jacob, D.J. 1986. The chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulphate. J. Geophys. Res. 91, in press.

    Google Scholar 

  • Jacob, D. and Hoffmann, M.R. 1983. ‘A dynamic model for the production of H+, NO3” and S04= in urban fog’. J. Geophys. Res. 88, 6611–6621

    Google Scholar 

  • Jayson, G.G., Parsons, B.J. and Swallow, A.J. 1973. ’Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution’. J. Chem. Soc. Faraday Trans. 69, 1597–1607.

    Google Scholar 

  • Leaitch, W.R., Strapp, R.J.W., Wiebe, A. and Isaac, G.A. 1983. ’Measurements of scavenging and transformation of aerosol inside cumulus. Precipitation Scavenging, Dry Deposition and Resuspension. Vol. 1 Elsevier, 53–69.

    Google Scholar 

  • Lebury, W. and Blair, E.W. 1925. ’The partial formaldehyde vapour pressure of aqueous solutions of formaldehyde II’. J. Chem. Soc., 2832–2839.

    Google Scholar 

  • Le Henaff, P. 1966. ’Methodes d’etude et propreites des hydrates, hemiacetals et hemithioacetals derives des aldehydes et des cetones’. Bull. Soc. Chim. France, 4687–4700.

    Google Scholar 

  • Lind, J.A., Kok, G.L. 1986. ’Henry’s law determinations for hydrogen peroxide, methylhydroperoxide and peroxyacetic acid ’. J. Geophys. Res. 91, 7889–7895.

    Article  Google Scholar 

  • Lind, J., Lazrus, A.L. and Kok, G.L. 1986. ’Aqueous-phase oxidation of S(IV) by hydrogen peroxide, methy Hydroperoxide and peroxyacetic acid’. J. Geophys. Res. 91, in press.

    Google Scholar 

  • Maahs, H.G. 1982. ’Sulphur dioxide/water equilibria between 0° and 50°C. An examination of data at low concentrations’. In: Heterogeneous Atmospheric Chemistry, Schreyer, D.R. ed. Amer. Geophys Union, Washington DC, 187–195.

    Chapter  Google Scholar 

  • Martin, L.R. and Damschen, D.E. 1981. ’Aqueous oxidation of sulphur dioxide by hydrogen peroxide at low pH’. Atmos. Environ. 15, 1615–1621.

    Article  Google Scholar 

  • Maruthamuthu, P. and Neta, P. 1978. ’Spectra, acid-base equilibria, and reactions with inorganic compounds’. J. Phys. Chem. 82, 710–713.

    Article  Google Scholar 

  • McElroy, W.J. 1986. ’The aqueous oxidation of SO2 by OH radicals’. Atmos. Environ. 20, 323–330.

    Article  Google Scholar 

  • Munger, J.W., Jacob, D.J., Waldman, J.M. and Hoffmann, M.R. 1983. ’Fogwater chemistry in an urban atmosphere’. J. Geophys. Res. 88, 5109–5121.

    Article  Google Scholar 

  • National Bureau of Standards, 1965. ’Selected values of chemical thermodynamic properties’. NBS Tech note # 270–1, 124 pp.

    Google Scholar 

  • Nenadovic, M.T., Draganic, Z.D. and Kidric, B. 1972. ’Radiolosis of formic acid-oxygen solution of pD 1.3–13 and the yields of primary product in a-radiolosis of heavy water’. Proc. Tihany. Symp. Radiat. Che. 3, 1269–1280.

    Google Scholar 

  • Paluch, I.R. 1979. ’The entrainment mechanism in Colorado cumuli’. J. Atmos. Sci. 36, 2467–2478.

    Article  Google Scholar 

  • Ross, A.B. and Neta, P. 1979. ’Rate constants for reactions of inorganic radicals in aqueous solution’. Rept. # NSRDS-NBS-65, US Department of Commerce, Washington DC, USA.

    Google Scholar 

  • Schwartz, S.E. 1984. ’Gas and aqueous chemistry of HC2 in liquid water clouds’. J. Geophys. Res. 89, 11589–11598.

    Article  Google Scholar 

  • Schwartz, S.E. and White, W.H. 1981. ’Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution’. Adv. Env. Sci. Eng 4, 1–45.

    Google Scholar 

  • Sehested, K., Rasmussen, O.L. and Fricke, H. 1968. ’Rate constants of OH with HO2, O2” and H202+ from hydrogen peroxide formation in pulse-irradiated oxygenated water’. J. Phys. Chem. 72, 626–631.

    Article  Google Scholar 

  • Sehested, K., Holeman, J. and Hart, E.J. 1983. ’Rate constants and products of the reactions of eaq~, O2” and H with ozone in aqueous solutions’. J. Phys. Chem. 87, 1951–1954.

    Article  Google Scholar 

  • Smith, R.M. and Martell, A.E. 1976. Critical Solubility Constants. Vol. 4: Inorganic Complexes. Plenum Press, New York. 257 pp.

    Google Scholar 

  • Walcek, C.J. and Taylor, G.R. 1986. ’A theoretical method for computing vertical distributions of acidity and sulphate production within cumulus clouds’. J. Atmos. Sci. 43, 339–355.

    Article  Google Scholar 

  • Warner, J. 1970. ’On steady-state one-dimensional models of cumulus convection’. J. Atmos. Sci. 27, 1035–1040.

    Article  Google Scholar 

  • Weast, R.C. (ed.) 1978. Handbook of Chemistry and Physics, 59th edition. Chemical Rubber Company, Cleveland Ohio.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic publishers

About this chapter

Cite this chapter

Walcek, C.J. (1988). Meteorological and Chemical Factors Influencing Cloudwater Composition in a Non-Precipitating, Liquid-Water Updraft. In: Unsworth, M.H., Fowler, D. (eds) Acid Deposition at High Elevation Sites. NATO ASI Series, vol 252. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3079-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3079-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7883-2

  • Online ISBN: 978-94-009-3079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics