Skip to main content

Guanidinium as a Probe of the Gramicidin Channel Interior

  • Conference paper
Transport Through Membranes: Carriers, Channels and Pumps

Abstract

Guanidinium is a planar trigonal cation which is similar in size to the gramicidin channel pore. We measured the effect of guanidinium on the conductance properties of the gramicidin channel and theoretically evaluated its interactions with the β-6.3 channel interior using an energy minimization and conformational search approach. Guanidinium current (measured in the absence of other permeable ions) could not be detected directly (g(Guan)/g(K) < 0.004). However, guanidinium induces blocks in gramicidin channel potassium currents. The average block duration gets shorter with increased membrane potential suggesting that guanidinium can penetrate the ion channel. Energy minimization calculations indicate that, by reorienting along the pathway, the guanidinium should be able to penetrate the gramicidin channel. This finding is illustrated by a computer graphics animation of the series of minimum-energy orientations. The low permeability of the channel to guanidinium is tentatively ascribed to an entropic barrier resulting from the restrictions on the ion motion in the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Begenisich, T. B. and M. D. Cahalan. 1980a. ‘Sodium channel permeation in squid axons. I: Reversal potential experiments’. J. Physiol. 307: 217–242.

    PubMed  CAS  Google Scholar 

  • Begenisich, T. B. and M. D. Cahalan. 1980b. ‘Sodium channel permeation in squid axons. II: Non-independence and current-voltage relations’. J. Physiol. 307: 243–257.

    PubMed  CAS  Google Scholar 

  • Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., and M. Karplus. 1983. ‘CHARMM: A program for macromolecular energy, minimization, and dynamics calculations’. Journal of Comp. Chem. 4: 187- 217.

    Article  CAS  Google Scholar 

  • Busath, D. and G. Szabo. 1988. ‘Low conductance gramicidin A channels are head-to-head dimers of β-6-helices’. Biophys. J. 53: 689–695.

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun, D. and F. J. Sigworth. 1983. ‘Fitting and statistical analysis of single-channel records’. In Single-Channel Recording. B Sakmann and E. Neher, eds. Plenum Press, New York, pp 191–263.

    Google Scholar 

  • Eisenman, G. 1962. ‘Cation selective glass electrodes and their mode of operation’. Biophys. J. 2: 259–323.

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, G., Krasne, S., and S. Ciani. 1976. ‘Further studies on ion selectivity’. In Ion and Enzyme Electrodes in Medicine and in Biology. M. Kessler, L. Clark, D. Lubbers, J. Silver, and W. Simon, eds. Urban and Schwarzenberg, Munich-Berlin-Vienna, pp 3–22.

    Google Scholar 

  • Herzig, L., Massa, L.J., Santoro, A., and A.M. Sapse. 1981. ‘Guanidinium Ion Self-Consistent Field Calculations: Fluoro, Amino, and Methyl Single Substituents’. J. Org. Chem. 46: 2330–2333.

    Article  CAS  Google Scholar 

  • Hille, B. 1971. ‘The Permeability of the Sodium Channel to Organic Cations in Myelinated Nerve’. J. Gen. Physiol 58: 599–619.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B. 1975. ‘Ionic Selectivity of Na and K channels of nerve membranes’. In Membranes - A Series of Advances. Vol 3, Dynamic Properties of Lipid Bilayers and Biological Membranes. G. Eisenman, ed. Marcel Dekker, Inc., New York. 255–323.

    Google Scholar 

  • Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer Associates Inc. Sunderland, MA.

    Google Scholar 

  • Hladky, S.B. and D.A. Haydon. 1972. ‘Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel’. Biochim. Biophys. Acta. 274: 294–312.

    Article  PubMed  CAS  Google Scholar 

  • Koeppe, R.E. II and L.B. Weiss. 1981. ‘Resolution of linear gramicidins by preparative reversed-phase high-performance liquid chromatography’. J.Chromatog. 208: 414–418.

    Article  CAS  Google Scholar 

  • McCammon, J. A., Gelin, B. R., and M. Karplus. 1977. ‘Dynamics of folded proteins’. Nature 267: 585–590.

    Article  PubMed  CAS  Google Scholar 

  • Myers, V. B. and D. A. Haydon. 1972. ‘Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity’. Biochim. Biophys. Acta 274: 313–322.

    Article  PubMed  CAS  Google Scholar 

  • Parsegian, A. 1969. ‘Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems’. Nature 221: 844–846.

    Article  PubMed  CAS  Google Scholar 

  • Roux, B. and M. Karplus. 1988. ‘The normal modes of the gramicidin-A dimer channel’. Biophys. J. 53: 297–310.

    Article  PubMed  CAS  Google Scholar 

  • Urry, D. W., Goodall, M. C, Glickson, J. D., and D. F. Mayers. 1971. ‘The gramicidin A transmembrane channel: Characteristics of head-to-head dimerized pi(L,D) helices’. Proc. Natl Acad. Sci. USA 68: 1907–1911.

    Article  PubMed  CAS  Google Scholar 

  • Ussing, H. H. 1949. ‘The distinction by means of tracers between active transport and diffusion’. Acta Physiol. Scand. 19: 43–56.

    Article  CAS  Google Scholar 

  • Venkatachalam, C. M. and D. W. Urry. 1983. ‘Theoretical conformational analysis of the gramicidin A transmembrane channel. I. Helix sense and energetics of head-to-head dimerization’. J. Comput. Chem. 4: 461–469.

    Article  CAS  Google Scholar 

  • Venkatachalam, C. M. and D. W. Urry. 1984. ‘Theoretical analysis of gramicidin A transmembrane channel. II. Energetics of helical librational states of the channel’. J. Comput. Chem. 5: 64–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this paper

Cite this paper

Busath, D., Hemsley, G., Bridal, T., Pear, M., Gaffney, K., Karplus, M. (1988). Guanidinium as a Probe of the Gramicidin Channel Interior. In: Pullman, A., Jortner, J., Pullman, B. (eds) Transport Through Membranes: Carriers, Channels and Pumps. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3075-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3075-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7882-5

  • Online ISBN: 978-94-009-3075-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics