Skip to main content

Geometric and Lie-Theoretic Principles in Pure and Applied Deformation Theory

  • Chapter
Deformation Theory of Algebras and Structures and Applications

Part of the book series: NATO ASI Series ((ASIC,volume 247))

Abstract

These notes develop a geometric point of view in the theory of deformation of structures, emphasizing the role of the orbit space of a group of symmetries of a system of differential equations acting on the space of solutions. The usual infinitesimal deformation space—which appears as a cohomology group in many special situations—is the tangent space to this space of orbits. The classical theory of deformation of complex structures is presented first as a model, then the deformation of the Cartan-Maurer equations is discussed from a differential form point of view, leading in a very natural way to Chevalley-Eilenberg cohomology. Relations with certain aspects of mathematical physics and control theory are also evident.

This work was also partially supported by a grant from the Applied Mathematics Program of the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bryant, S. Chern, and. R. Griffiths, Exterior differential Systems (to appear).

    Google Scholar 

  2. E. Cartan, Les Systems Différentielles Extérieures et Leur Applications Géométriques, Herman, Paris, 1946.

    Google Scholar 

  3. E. Cartan, Leçons sur les Invariants Integraux, Herman, Paris, 1921.

    Google Scholar 

  4. E. Cartan, ‘Sur la Structure des Groupes Infinis de Transformations’, 1 Ann. Sci Ecole Norm. Sup. 21, 219–308 (1905).

    MathSciNet  Google Scholar 

  5. E. Cartan, ‘Les Sous-Groupes Continue de Transformations,’ Ann. Sci. Ecole Norm. Sup. 25, 57–194 (1908).

    MathSciNet  Google Scholar 

  6. E. Cartan, ‘Les Groupes de Transformations Continus, Infinis, Simples’ Ann. Sci. Ecole Norm. Sup. 26, 93–161(1909).

    MathSciNet  Google Scholar 

  7. S.S. Chern, ‘Pseudogroupes Continue Infinis, Géométrie Différentielle’ Colloque Internationaux du Centre National de la Recherche Scientifique, Paris, 1953.

    Google Scholar 

  8. C. Chevalley, Theory of Lie Groups, Princeton University Press, Princeton, 1946.

    MATH  Google Scholar 

  9. C. Chevalley and S. Eilenberg, ‘Cohomology Theory of Lie Groups and Lie Algebras,’ Trans. Amer. Math. Soc. 63, 85–124 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Conn, ‘Normal Forms for Analytic Poisson Structures,’ Ann. Math 119, 577–60 (1924).

    Article  MathSciNet  Google Scholar 

  11. J. Conn, ‘Normal Forms for Smooth Poisson Structures,’ Ann. Math 121, 565–593 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Ehresmann, ‘Connexions Infinitesimales,’ Coll. Top. Alg. Bruxelles (1950).

    Google Scholar 

  13. C. Ehresmann, ‘Structures Infinitesimales et Pseudogroupes de Lie,’ Coll. Int. CNRS Geom. Diff. Strasbourg (1958).

    Google Scholar 

  14. C. Ehresmann, ‘Sur les Structures Infinite simales Regulieres’, Cong. Int. Math. Amsterdam (1954).

    Google Scholar 

  15. C. Ehresmann, Oevres Completes, Parties 1–1 et 1–2, Amiens, 1984.

    Google Scholar 

  16. C. Ehresmann, ‘Connexions id’Ordre Supérieur,’ Atti Congeso dell’Unione Matematica Italiana, 326–328 (1955).

    Google Scholar 

  17. C. Ehresmann, ‘Categories Topologiques et Categories Differentiates,’ Colloq. Geom. Diff. Globale, Bruxelles, CBRM (1958).

    Google Scholar 

  18. C. Ehresmann, ‘Groupoides Differenciales’, Rev. Un. Mat. Argentina Buenos Aires (1960).

    Google Scholar 

  19. A. Fröhlicher, ‘Zur Differentialgeometrie der Komplexen Structuren,’ Math. Ann. 129, 50–95 (1955).

    Article  MathSciNet  Google Scholar 

  20. A. Fröhlicher and A. Nijenhuis, ‘Theory of Vector-Valued Differential Forms, Part I: Derivations in the Graded Ring of Differential Forms,’ Proc. Kon. Ned. Akad. Wet. 18, 339–359 (1956).

    Google Scholar 

  21. A. Fröhlicher and A. Nijenhuis, ‘A Theorem on Stability of Complex Structures,’ Proc. Nat. Acad. Sci. 43, 239–241 (1957).

    Article  MathSciNet  Google Scholar 

  22. R. Gardner, ‘Differential Geometric Methods Interfacing Control Theory,’ in Differential Geometric Control Theory (R. Brockett, R. Millman, and H. Sussman, eds.) 117–180, Birkhauser-Boston.

    Google Scholar 

  23. M. Gerstenhaber, ‘The Cohomology Structure of an Associative Ring,’ Ann. Math. 78, 267–288 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Gerstenhaber, ‘The Deformation of Rings and Algebras,’ Ann. Math. 79, 59–103 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  25. P.A. Griffiths, ‘On the Theory of Variation of Structures Defined by Transitive, Continuous Pseudogroups,’ Osaka Journal of Math. 1, 175–199. (1964).

    MATH  Google Scholar 

  26. V. Guillemin and S. Sternberg, ‘An Algebraic Model of Transitive Differential Geometry,’ Bull. Amer. Math. Soc. 70, 16–47 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Guillemin and S. Sternberg, ‘Remarks on a Paper of Hermann,’ Trans. Amer. Math. Soc. 130, 110–116 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Guillemin and S. Sternberg, ‘Deformation Theory of Pseudogroup Structures,’ Memoirs of Am. Math. Soc. 24 (1–966).

    Google Scholar 

  29. D. Harrison, ‘Commutative Algebras and Cohomology,’ Trans. Amer. Math. Soc. 104, 191–204 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Haeflinger, ‘Structures Feuilletees et Cohomologies a Valeur dans un Faisceau do Groupoides,’ Comment. Math, Helv. 32, 248–329 (1958).

    Article  MathSciNet  Google Scholar 

  31. R. Hermann, Differential Geometry and the Calculus of Variations, 2nd Ed., Math Sci Press, Brookline, MA, 1977.

    MATH  Google Scholar 

  32. R. Hermann, Geometry, Physics and Systems, Dekker, New York, 1973.

    MATH  Google Scholar 

  33. R. Hermann, ‘Cartan Connections and the Equivalence Problem for Geometric Structures,’ Contrib. Diff. Equations 3, 199–248 (1964).

    MathSciNet  Google Scholar 

  34. R. Hermann, ‘E. Cartan’s Geometric Theory of Partial Differential Equations,’ Adv. Math. 1, 265–317 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Hermann, Lie Algebras and Quantum Mechanics, W. Benjamin, New York, 1970.

    MATH  Google Scholar 

  36. R. Hermann, ‘The Geometric Theory of Deformation and Linearization and its Application to System Theory and Mathematical Physics, Part I,’ J. Math. Phys. 24, 2268–276 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Hermann, ‘The Formal Linearization of a Semisimple Lie Algebra of Vector Fields about a Singular Point,’ Trans. Amer. Math. Soc. 130, 105–109 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Hermann, ‘Formal Linearization of Vector Fields and Related Cohomology, I and II,’ J. Diff. Geom. 8, 1–74 (1973).

    MathSciNet  MATH  Google Scholar 

  39. R. Hermann, ‘Perturbation and Linearization of Nonlinear Control Systems,’ in Proceedings of the Berkeley-Ames Conference on Nonlinear Problems in Control and Fluid Mechanics, Math Sci Press, Brookline, MA, 1984.

    Google Scholar 

  40. R. Hermann, Vector Bundles in Mathematical Physics, Parts I and II, W.A. Benjamin, New York, 1970.

    Google Scholar 

  41. R. Hermann, Energy-Momentum Tensors, Math Sci Press, Brookline, MA, 1973.

    MATH  Google Scholar 

  42. R. Hermann, Physical Aspects of Lie Group Theory, University of Montreal Press, Montreal, 1974.

    MATH  Google Scholar 

  43. R. Hermann, Topics in the Mathematics of Quantum Mechanics, Math Sci Press, Brookline, MA, 1973.

    MATH  Google Scholar 

  44. R. Hermann, ‘On the Acessibility Problem of Control Theory,’ in Proc. Symp. on Differential Equations, Academic Press, 1961.

    Google Scholar 

  45. R. Hermann, ‘The Differential Geometry of Foliations’, II, J. Math, and Mech. 11, 303–316 (1962).

    MathSciNet  MATH  Google Scholar 

  46. R. Hermann, ‘Existence in the Large of Parallelism Homomorphisms’, 1 Trans. Amer. Math. Soc. 161, 170–183 (1963).

    Article  MathSciNet  Google Scholar 

  47. R. Hermann, ‘Equivalence of Submanifolds of Homogeneous Spaces,’ Math. Ann. 158, 284–289 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Hermann, ‘Analytic Continuation of Group Representations’, Parts I-VI, Comm. Math. Phys. 2, 251–270 (1966); 3, 53–74 (1966); 4, 75–97 (1966); 5, 131–156 (1967); 5, 157–190 (1967); 6, 205–225 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  49. R. Hermann, ‘The Gell-Mann Formula for Representations of Semisimple Groups,’ Comm. Math. Phys. 2, 155–164 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  50. R. Hermann, ‘Compactification of Homogeneous Spaces’, Parts I and II, J. Math, and Mech. 14, 655–678 (1965); 15, 667–681 (1966).

    MathSciNet  MATH  Google Scholar 

  51. R. Hermann, ‘Quantum Field Theories with Degenerate Lagrangians, ’ Phys. Rev. 177, 2453 (1969).

    Article  MATH  Google Scholar 

  52. R. Hermann, ‘Current Algebra, Sugawara Model, and Differential Geometry,’ J. Math. Phys. 11, 1825–1829 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  53. R. Hermann, ‘Infinite Dimensional Lie Algebras and Current Algebra,’ in Proceedings of the 1969 Batelle Rencontre on Mathematical Physics (V. Bargmann, ed.), Springer-Verlag, Berlin, 1970.

    Google Scholar 

  54. R. Hermann, Lie Groups for Physicists, W.A. Benjamin, 1966.

    MATH  Google Scholar 

  55. R. Hermann, ‘Group Representations and Creation Operators,’ Comm. Math. Phys. 2, 78–93 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  56. R. Hermann, ‘The Second Variation for Minimal Submanifolds,’ J. Math, and Mech. 16, 473–492 (1966).

    MathSciNet  MATH  Google Scholar 

  57. R. Hermann, ‘Differential Equations of the Matrix Elements of the Degenerate Series,’ Bull. Amer. Math. Soc. 73, 899–903 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  58. R. Hermann, ‘General Mass Formulas for the Nambu Wave Equation,’ Phys. Rev. 167, 1318 (1967).

    Article  Google Scholar 

  59. R. Hermann, ‘The Second Variation for Variational Problems in Canonical Form,’ Bull. Amer. Math. Soc. 71, 145–148 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  60. R. Hermann, ‘The Theory of Equivalence of Pfaffian Systems and Input Systems Under Feedback,’ Math System Theory 15, 343–356 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  61. E. Inonu and E. Wigner, ‘On the Contraction of Groups and their Representations,’ Proc. Nat. Acad. Sci., 510–524, 1953.

    Google Scholar 

  62. V.G. Kac, Infinite Dimensional Lie Algebras, 2nd ed., Cambridge University Press, 1985.

    Google Scholar 

  63. S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, 1972.

    MATH  Google Scholar 

  64. S. Kobayashi and T. Nagano, On Filtered Lie Algebras and Geometric Structures,’ J. Math, and Meoh. 13, 875–907 (1964); 14, 513–521 (1965).

    MathSciNet  Google Scholar 

  65. K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Springer-Verlag, 1986.

    Google Scholar 

  66. K. Kodaira and D.C. Spencer, ‘on the Variation of Almost-Complex Structures,’ in Algebraic Geometry and Topology, Princeton University Press, 1957.

    Google Scholar 

  67. K. Kodaira, L. Nirenberg, and D.C. Spencer, ‘On the Existence of Deformation of Complex Analytic Structure,’ Ann. Math. 68, 450–459 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  68. A. Kumpera and D.C. Spencer, ‘Lie Equations, I: General Theory,’ Annals of Mathematics Studies, Princeton University Press, 1972.

    Google Scholar 

  69. M. Kuranishi, ‘On the Locally Complete Families of Complex Analytic Structures,’ Ann. Math. 75, 536–577 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  70. M. Levy-Nahas, ‘Deformation and Contraction of Lie Algebras,’ J. Math. Phys. 8, 1211–1222 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  71. S. Matsushima, ‘Pseudogroups de Lie Transitifs’, Seminaire Bourbaki 118, Paris (1955).

    Google Scholar 

  72. A. Newlander and L. Nirenberg, ‘Complex Analytic Coordinates in Almost-Complex Manifolds,’ Ann. Math. 65, 391–404 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  73. A. Nijenhuis and R. Richardson, ‘Cohomology and Deformation in Graded Lie Algebras,’ Bull. Amer. Math. Soc. 72, 1–29 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  74. A. Nijenhuis and R. Richardson, ‘Cohomology and Deformation of Algebraic Structures,’ Bull. Amer. Math. Soc. 70, 406–411 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  75. A. Nijenhuis and R. Richardson, ‘Deformations of Homomorphisms of Lie Groups and Lie Algebras,’ Bull. Amer. Math. Soc. 73, 175–179 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  76. A. Nijenhuis and R. Richardson, ‘Deformations of Lie Algebra Structures,’ J. Math, and Mech. 17, 89–106 (1967).

    MathSciNet  MATH  Google Scholar 

  77. A. Nijenhuis, ‘A Lie Product for the Cohomology of Subalgebras with Coefficients in the Quotient,’ Bull. Amer. Math. Soc. 73, 962–967 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  78. A. Nijenhuis, ‘A Class of Common Properties of Some Different Types of Algebras, Parts I and II,’ Archief voor Wiskunde 17, 17–46 (1969); 17, 87–108 (1969).

    MathSciNet  Google Scholar 

  79. A. Nijenhuis and R. Richardson, Commutative Algebra Cohomology and Deformation of Lie and Associative Algebras, Journal of Algebra 9, 42–53 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  80. S. Page and R. Richardson, ‘Stable Subalgebras of Lie Algebras and Associative Algebras,’ Trans. Amer. Math. Soc. 127, 302–312 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  81. B. Reinhart, Differential Geometry of Foliations, Springer-Verlag, 1983.

    Google Scholar 

  82. R. Richardson, ‘Deformations of Lie Subgroups,’ Bull. Amer. Math. Soc. 77, 92–96 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  83. R. Richardson, ‘Deformation of Subalgebras of Lie Algebras,’ J. Diff. Geom. 3, 289–309 (1969).

    MATH  Google Scholar 

  84. R. Richardson, ‘Deformation of Lie Subgroups and the Variation Isotropy Subgroups,’ Acta Math 129, 37–73 (1972).

    Article  Google Scholar 

  85. R. Richardson, ‘A Rigidity Theorem for Subalgebras of Lie and Associative Algebras,’ Ill. J. Math. 11, 92–110 (1967).

    MATH  Google Scholar 

  86. D.S. Rim, ‘Deformation of Transitive Lie Algebras,’ Annals of Math. 83, 339–357 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  87. I.E. Segal, Duke Math. J. 18, 1221–1265 (1951).

    Article  Google Scholar 

  88. D.C. Spencer, Selecta, I-III, World Scientific, Singapore, 1985.

    Google Scholar 

  89. S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964.

    MATH  Google Scholar 

  90. O. Teichmuller, ‘Extremale Quasikonsorme Abbildungenn und Quadratische Différentielle,’ Abh. Preussj Akad. de Wiss. 22, 1–97 (1939).

    Google Scholar 

  91. W.T. Van Est, ‘Group Cohomology and Lie Algebra Cohomology in Lie Groups,’ Nederl. Akad. Wet. Indag. Math. 15, 484–504 (1953).

    Google Scholar 

  92. A. Weil, ‘Remarks on the Cohomology of Groups,’ Ann. Math. 80, 149–158 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  93. B. Weisfeiler, ‘Infinite Dimensional Filtered Lie Algebras and their Connection with Graded Lie Algebras,’ Funct. Anal. Appl. 2, 88–89 (1968).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hermann, R. (1988). Geometric and Lie-Theoretic Principles in Pure and Applied Deformation Theory. In: Hazewinkel, M., Gerstenhaber, M. (eds) Deformation Theory of Algebras and Structures and Applications. NATO ASI Series, vol 247. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3057-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3057-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7875-7

  • Online ISBN: 978-94-009-3057-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics