Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 243))

Abstract

Future climatic conditions are likely to differ noticeably from those of today because of the effects of increasing atmospheric concentrations of greenhouse gases. In order to have confidence in predictions of future climate, we must assess the reliability of the models used for prediction, that is, we must validate the models. Predictions at the regional and seasonal scale, which are central in estimating impacts of climatic change, can only be made using complex general circulation climate models. For such models, three types of validation may be distinguished: validation of the internal physics and subgrid-scale parameterizations of the models, validations against present climate with the model in the control-run mode, and validation against other climate states in the perturbed-run mode. Because of space limitations, this chapter concentrates on control run validation. Examples are given showing model performance in simulating mean sea level pressure over the Europe/North Atlantic/North America region. Sea-level pressure is used as an illustrative variable because of its fundamental role in describing the atmospheric circulation, its strong links with temperature and precipitation, and the excellent spatial and temporal coverage afforded by existing observations. Three models are considered, two with prescribed ocean surface boundary conditions and one with a fully interactive ocean. Problems in interpreting model errors are described and illustrated using the examples of simulated pressures over Greenland and the seasonal cycles of the latitude and intensity of the Iceland Low and Azores High. Model simulations of these features are generally poor. In cases where model and observed data are less obviously different, model performance must be judged using objective statistical techniques. The main parameters used in such tests are means and variances, but spatial pattern comparisons can also provide valuable information. Model/observed similarities can be tested using both univariate and multivariate tests. Methods currently in use, together with their practical problems, are described and discussed. Examples are given of the use of grid point by grid point t-tests for differences in means, and the use of spatial correlation coefficients for assessing the strength of spatial pattern similarities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blackmon, M. L., and N.-C. Lau, 1980: ‘Regional characteristics of the Northern Hemisphere wintertime circulation: A comparison of the simulation of a GFDL general circulation model with observations.’ J. Atmos. Sci., 37, 497–514.

    Article  Google Scholar 

  • Chervin, R. M., 1980a: ‘On the simulation of climate and climate change with general circulation models.’ J. Atmos. Sci., 37, 1903–1913.

    Article  Google Scholar 

  • Chervin, R. M., 1980b: ‘Estimates of first- and second-moment climatestatistics in GCM simulated climate ensembles.’ J. Atmos. Sci., 37, 1889–1902.

    Article  Google Scholar 

  • Chervin, R. M., 1981: ‘On the comparison of observed and GCM simulated climate ensembles.’ J. Atmos. Sci., 38, 885–901.

    Article  Google Scholar 

  • Chervin, R. M., 1986: ‘Interannual variability and seasonal climatic predictability.’ J. Atmos. Sci., 43, 233–251.

    Article  Google Scholar 

  • Chervin, R. M., 1988: ‘Predictability of time-averaged atmospheric states’. In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. II, M. E. Schleslnger, ed., Kluwer Academic Publishers, 983–1008.

    Google Scholar 

  • Chervin, R. M., and S. H. Schneider, 1976: ‘A study of the response of NCAR GCM climatological statistics to random perturbations: Estimating noise levels.’ J. Atmos. Sci., 33, 391–404.

    Article  Google Scholar 

  • Christy, J.R., and K. E. Trenberth, 1985: ‘Hemispheric interannual fluctuations in the distribution of atmospheric mass.’ J. Geophys. Res., 90, 8053–8065.

    Article  Google Scholar 

  • Crowley, T., 1988: ‘Paleoclimate modelling.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. II, M. E. Schleslnger, ed., Kluwer Academic Publishers, 883–950.

    Google Scholar 

  • Gates, W. L., 1975: ‘The January global climate simulated by a two-level general circulation model: A comparison with observations.’ J. Atmos. Sci., 32, 449–477.

    Article  Google Scholar 

  • Gates, W. L., 1985a: ‘Problems and prospects in climate modeling.’ In Problems and Prospects in Climate Analysis and Forecasting, ed. U. Radok, Westview Press, Boulder, CO.

    Google Scholar 

  • Gates, W. L., 1985b: ‘Modeling as a means of studying the climate system.’ In Projecting the Climatic Effects of Increasing Carbon Dioxide, eds. M. C. Maracken and F. M. Luther, U.S. Dept. of Energy, Carbon Dioxide Research Division, Washington DC, 57–79.

    Google Scholar 

  • Gates, W. L., and M. E. Schleslnger, 1977: ‘Numerical simulation of the January and July global climate with a two-level atmospheric model.’ J. Atmos. Sci., 34, 36–76.

    Article  Google Scholar 

  • Gates, W. L., K. H. Cook and M. E. Schleslnger, 1981: ‘Preliminary analysis of experiments on the climatic effects of increased CO2 with an atmospheric general circulation model and a climatological ocean.’ J. Geophys. Res., 86, 6385–6393.

    Article  Google Scholar 

  • Gilchrist, A., 1986: ‘Long-range forecasting.’ Quart. J. Roy. Meteor. Soc., 112, 567–592.

    Article  Google Scholar 

  • Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy and L. Travis, 1983: ‘Efficient three-dimensional global models for climate studies: Models I and II.’ Mon. Wea. Rev., 111, 609–662.

    Article  Google Scholar 

  • Hasselmann, K., 1979: ‘On the signal-to-noise problem in atmospheric response studies.’ In Meteorology of Tropical Oceans, ed. D. B. Shaw, Roy. Meteor. Soc., 251–259.

    Google Scholar 

  • Hayashi, Y., 1982: ‘Confidence intervals of a climate signal.’ J. Atmos. Sci., 39, 1895–1905.

    Article  Google Scholar 

  • Hotelling, H., 1931: ‘The generalization of Student’s ratio.’ Annals of Mathematical Statistics, 2, 360–378.

    Article  Google Scholar 

  • Kasahara, A., and W. M. Washington, 1971: ‘General circulation experiments with a six-layer NCAR model, including orography, cloudiness and surface temperature calculations.’ J. Atmos. Sci., 28, 657–701.

    Article  Google Scholar 

  • Katz, R. W., 1982: ‘Statistical evaluation of climate experiments with General Circulation Models: A parametric time series modeling approach.’ J. Atmos. Sci., 39, 1446–1455.

    Article  Google Scholar 

  • Laurmann, J. A., and W. L. Gates, 1977: ‘Statistical considerations in the evaluation of climatic experiments with atmospheric general circulation models.’ J. Atmos. Sci., 34, 1187–1199.

    Article  Google Scholar 

  • Laval, K., 1988: ‘Ocean and land surface processes.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. I, M. E. Schlesinger, ed., Kluwer Academic Publishers, 285–306.

    Google Scholar 

  • Leith, C. E., 1973: ‘The standard error of time average estimates of climatic means.’ J. Appl. Meteor., 12, 1066–1069.

    Article  Google Scholar 

  • Livezey, R. E., 1985: ‘Statistical analysis of general circulation model climate simulation, sensitivity and prediction experiments.’ J. Atmos. Sci., 42, 1139–1149.

    Article  Google Scholar 

  • Livezey, R. E., and W. Y. Chen, 1983: ‘Statistical field significance and its determination by Monte Carlo techniques.’ Mon. Wea. Rev., 111, 46–59.

    Article  Google Scholar 

  • Luther, F. M., 1985: ‘Projecting the climatic effects of increasing carbon dioxide: Volume summary.’ In Projecting the Climatic Effects of Increasing Carbon Dioxide, eds. M. C. Maracken and F. M. Luther, U.S. Dept. of Energy, Carbon Dioxide Research Division, Washington DC, 259–272.

    Google Scholar 

  • Luther, F. M., and R. G. Ellingson, 1985: ‘Carbon dioxide and the radiation budget.’ In Projecting the Climatic Effects of Increasing Carbon Dioxide, eds. M. C. Maracken and F. M. Luther, U.S. Dept. of Energy, Carbon Dioxide Research Division, Washington DC, 25–55.

    Google Scholar 

  • Maracken, M. C., and F. M. Luther, (eds.) 1985: Projecting the Climatic Effects of Increasing Carbon Dioxide. U.S. Dept. of Energy, Carbon Dioxide Research Division, Washington DC, 381 pp.

    Google Scholar 

  • Manabe, S., J. Smagorinsky and R. F. Strickler, 1965: ‘Simulated climatology of a general circulation model with a hydrological cycle.’ Mon. Wea. Rev., 93, 769–798.

    Article  Google Scholar 

  • Manabe, S., and R. J. Stouffer, 1979: ‘A CO2-climate sensitivity study with a mathematical model of the global climate.’ Nature, 282, 491–493.

    Article  Google Scholar 

  • Manabe, S., and R. J. Stouffer, 1980: ‘Sensitivity of a global climate model to an increase of C02 concentration in the atmosphere.’ J. Geophys. Res., 85, 5529–5554.

    Article  Google Scholar 

  • Manabe, S., and R. T. Wetherald, 1975: ‘The effects of doubling the CO2 concentration on the climate of a general circulation model.’ J. Atmos. Sci., 32, 3–15.

    Article  Google Scholar 

  • Manabe, S., and R. T. Wetherald, 1980: ‘On the distribution of climate change resulting from an increase in CO2-content of the atmosphere.’ J. Atmos. Sci., 37, 99–118.

    Article  Google Scholar 

  • Mielke, P. W., 1985: ‘Design and evaluation of weather modification experiments.’ In Probability, Statistics, and Decision Making in the Atmospheric Sciences, eds. A. H. Murphy and R. W. Katz, Westview Press, Boulder, CO, 439–459

    Google Scholar 

  • Mielke, P. W., K. J. Berry and G. W. Brier, 1981: ‘Application of multi-response permutation procedures for examining seasonal changes in monthly sea-level pressure patterns.’ Mon. Wea. Rev., 109, 120–126.

    Article  Google Scholar 

  • Mitchell, J. F. B., 1983: ‘The seasonal response of a General Circulation Model to changes in CO2 and sea temperature.’ Quart. J. Roy. Meteor. Soc., 109, 113–152.

    Google Scholar 

  • Oort, A. H., 1983: ‘Global atmospheric circulation statistics, 1958–1973.’ Professional Paper No. 14, NOAA, Washington, D.C., 180 pp.

    Google Scholar 

  • Palmer, T. N., and D. A. Mansfield, 1986: ‘A study of wintertime circulation anomalies during past El Niño events, using a high resolution general circulation model. I: Influence of model climatology.’ Quart. J. Roy. Meteor. Soc., 112, 613–638.

    Article  Google Scholar 

  • Palmer, T. N., G. J. Shutts and R. Swinbank, 1986: ‘Alleviations of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization.’ Quart. J. Roy. Meteor. Soc., 112, 1001–1039.

    Article  Google Scholar 

  • Preisendorfer, R. W., and T. P. Barnett, 1983: ‘Numerical model-reality intercomparison tests using small-sample statistics.’ J. Atmos. Sci., 40, 1884–1896.

    Article  Google Scholar 

  • Robinson, G. K., 1982: ‘Behrens-Fisher problem.’ In Encyclopedia of Statistical Sciences, Vol. 1, eds. S. Kotz, N. L. Johnson and C. B. Read, John Wiley and Sons, New York, 205–209.

    Google Scholar 

  • Rosen, R. D., D. A. Salstein and J. P. Peixoto, 1979: ‘Variability in the annual fields of large-scale atmospheric water vapor transport.’ Mon. Wea. Rev., 107,26–37.

    Article  Google Scholar 

  • Santer, B. D., and T. M. L. Wigley, 1986: ‘Validation of general circulation model (GCM) control runs.’ Lawrence Livermore National Laboratory Report UCRL-15789, 126 pp.

    Google Scholar 

  • Schlesinger, M. E., 1982: ‘Simulating CO2-induced climatic change with mathematical climate models: Capabilities, limitations and prospects.’ Proceedings: Carbon Dioxide Research Conference: Carbon Dioxide, Science and Consensus (CONF-820970). U.S. Dept. of Energy, Washington DC, III.3–III.139.

    Google Scholar 

  • Schlesinger, M. E., 1984: ‘Atmospheric general circulation model simulations of the modern Antarctic climate.’ In Environment of West Antarctica: Potential CO 2 -Induced Change. National Research Council, National Academy Press, Washington DC, 155–196.

    Google Scholar 

  • Schlesinger, M. E., and J. F. B. Mitchell, 1985: ‘Model projections of the equilibrium climatic response to increased carbon dioxide.’ In Projecting the Climatic Effects of Increasing Carbon Dioxide, eds. M. C. Maracken and F. M. Luther, U.S. Dept. of Energy, Carbon Dioxide Research Division, Washington DC, 81–147.

    Google Scholar 

  • Schutz, C., 1975: ‘Synoptic Performance Characteristics of the Two-Level Atmospheric Model.’ Rand Corporation, Report R-1689-ARPA, Santa Monica, CA, 29 pp.

    Google Scholar 

  • Somerville, R. C. J., P. H. Stone, M. Halem, J. E. Hansen, J. S. Hogan, L. M. Druyan, G. Russell, A. A. Lacis, W. J. Quirk and J. Tenenbaum, 1974: ‘The GISS model of the global atmosphere.’ J. Atmos. Sci., 31, 81–117.

    Article  Google Scholar 

  • Soramerla, G., 1988: ‘Parameterization of the planetary boundary layer in large-scale atmospheric models.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. I, M. E. Schlesinger, ed., Kluwer Academic Publishers, 331–374.

    Google Scholar 

  • Spelman, M. J., and S. Manabe, 1984: ‘Influence of oceanic heat transport upon the sensitivity of a model climate.’ J. Geophys. Res., 89, 571–586.

    Article  Google Scholar 

  • Sundqvist, H., 1988: ‘Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. I, M. E. Schlesinger, ed., Kluwer Academic Publishers, 433–461.

    Google Scholar 

  • von Storch, H., 1982: ‘A remark on Chervin-Schneider’s algorithm to test significance of climate experiments with GCMs.’ J. Atmos. Sci., 39, 187–189.

    Article  Google Scholar 

  • von Storch, H., and E. Roeckner, 1983: ‘Verification of general circulation models applied to the Hamburg University GCM. Part I: Test of individual climate states.’ Mon. Wea. Rev., 111, 1965–1976.

    Article  Google Scholar 

  • Wallace, J. M., S. Tibaldi and A. J. Simmons, 1983: ‘Reduction of systematic errors in the ECMWF model through the introduction of an envelope orography.’ Quart. J. Roy. Meteor. Soc., 109, 683–718.

    Article  Google Scholar 

  • Washington, W. M., and G. A. Meehl, 1983: ‘General Circulation Model experiments on the climatic effects due to a doubling and quadrupling of carbon dioxide concentration.’ J. Geophys. Res., 88, 6600–6610.

    Article  Google Scholar 

  • Washington, W. M., and G. A. Meehl, 1984: ‘Seasonal cycle experiment on the climate sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed-layer ocean model.’ J. Geophys. Res., 89, 9475–9503.

    Article  Google Scholar 

  • Washington, W. M., and G. A. Meehl, 1986: ‘General circulation model CO2 sensitivity experiments: Snow-sea ice albedo parameterizations and globally averaged surface air temperature.’ Climatic Change, 8, 231–241.

    Article  Google Scholar 

  • Webb, III, T., and T. M. L. Wigley, 1985: ‘What past climates can indicate about a warmer world.’ In Projecting the Climatic Effects of Increasing Carbon Dioxide, eds. M. C. Maracken and F. M. Luther, U.S. Dept. of Energy, Carbon Dioxide Research Division, Washington, DC, 237–257.

    Google Scholar 

  • Wetherald, R. T., and S. Manabe, 1981: ‘Influence of seasonal variation upon the sensitivity of a model climate.’ J. Geophys. Res., 86, 1194–1204.

    Article  Google Scholar 

  • Wigley, T. M. L., K. R. Briffa and P. D. Jones, 1984: ‘On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology.’ J. Clim. Appl. Meteor., 23, 201–213.

    Article  Google Scholar 

  • Willmott, C. J., S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, J. O’Donnell and C. M. Rowe, 1985: ‘Statistics for the evaluation and comparison of models.’ Geophys. Res., 90, 8995–9005.

    Article  Google Scholar 

  • WMO (World Meteorological Organization), 1985: ‘The intercomparison of radiation codes in climate models (ICRCCM), longwave clear-sky calculations.’ Ed. F. M. Luther, Report of a meeting in Frascati, Italy, 15–18 August 1984. World Climate Research Programme Report WCP-93. WMO, Geneva, Switzerland, 37 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wigley, T.M.L., Santer, B.D. (1988). Validation of General Circulation Climate Models. In: Schlesinger, M.E. (eds) Physically-Based Modelling and Simulation of Climate and Climatic Change. NATO ASI Series, vol 243. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3043-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3043-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7868-9

  • Online ISBN: 978-94-009-3043-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics