Skip to main content

Quantitative Analysis of Feedbacks in Climate Model Simulations of CO2-Induced Warming

  • Chapter
Physically-Based Modelling and Simulation of Climate and Climatic Change

Part of the book series: NATO ASI Series ((ASIC,volume 243))

Abstract

The CO2-induced warming of the Earth’s surface air temperature simulated by energy balance models (EBMs), radiative-convective models (RCMs) and general circulation models (GCMs) is analyzed in terms of the direct radiative forcing of the increased CO2 concentration, the resultant warming that would occur if the climate system had no feedback mechanisms, and the feedbacks that either enhance or diminish the zero-feedback warming. The total feedback in EBMs ranges from 0 to 0.94 on a scale of −∞ to 1; this wide range is due to the inability of EBMs to determine the behavior of the climate system away from the energy balance level. The total feedback in RCMs ranges from −1.5 to 0.7; this wide range is due to differences in the treatment of the individual feedback mechanisms in RCMs. The total feedback of a single GCM simulation is 0.71, of which water vapor feedback is the single most important contributor, followed by cloud feedback and surface albedo feedback, with the lapse rate feedback making a negative contribution. It is concluded that the analysis of feedbacks in climate model simulations is a useful method of model intercomparison that provides insight on the causes of the differences in the models’ simulated CO2-induced warming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Augustsson, T., and V. Ramanathan, 1977: ‘A radiative-convective model study of the C02 climate problem.’ J. Atmos. Sci., 34, 448–451.

    Article  Google Scholar 

  • Bode, H. W., 1975: Network Analysis and Feedback Amplifier Design. Krieger, New York, 577 pp.

    Google Scholar 

  • Brunt, D., 1933: ‘The adiabatic lapse rate for dry and saturated air.’Quart. J. Roy. Meteor. Soc., 59, 351–360.

    Article  Google Scholar 

  • Budyko, M. I., 1956: Heat Balance of the Earth’s Surface. Gidrometeoizdat, Leningrad [in Russian], 266 pp. Translation by N. A. Steanova, MGA 13E-286, U.S. Weather Bureau, Washington, D.C., 11B-25.

    Google Scholar 

  • Budyko, M. I., 1969: ‘The effect of solar radiation variations on the climate of the earth.’ Tellus, 21, 611–619.

    Article  Google Scholar 

  • Callendar, G. S., 1938: ‘The artificial production of carbon dioxide and its influence on temperature.’ Quart. J. Roy. Meteor. Soc., 64, 223–240.

    Article  Google Scholar 

  • Cess, R. D., 1974: ‘Radiative transfer due to atmospheric water vapor: Global considerations of the earth’s energy balance.’ J. Quant. Spectros. Radiat. Transfer, 14, 861–871.

    Article  Google Scholar 

  • Cess, R. D., 1975: ‘Global climate change: An investigation of atmospheric feedback mechanisms.’ Tellus, 27, 193–198.

    Article  Google Scholar 

  • Charlock, T. P., 1981: ‘Cloud optics as a possible stabilizing factor in climate change.’ J. Atmos. Sci., 38, 661–663.

    Article  Google Scholar 

  • Charlock, T. P., 1982: ‘Cloud optical feedback and climate stability in a radiative-convective model.’ Tellus, 34, 245–254.

    Article  Google Scholar 

  • Chylek, P., and J. T. Kiehl, 1981: ‘Sensitivity of radiative-convective climate models.’ J. Atmos. Sci., 38, 1105–1110.

    Article  Google Scholar 

  • Elliott, W. P., L. Machta and C. D. Keeling, 1985: ‘An estimate of the biotic contribution to the atmospheric CO2 increase based on direct measurements at Mauna Loa Observatory.’ J. Geophys. Res., 90, 3741–3746.

    Article  Google Scholar 

  • Feigelson, E. M., 1978: ‘Preliminary radiation model of a cloudy atmosphere, 1, Structure of clouds and solar radiation.’ Beitr. Phys. Atmos., 51, 203–229.

    Google Scholar 

  • Gates, 1988: ‘Climate and the climate system.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. I, M. E. Schlesinger, ed., Kluwer Academic Publishers, 3–21.

    Google Scholar 

  • Goody, R. M., 1964: Atmospheric Radiation, Vol.I. Clarendon Press, 436 pp.

    Google Scholar 

  • Hall, M. C. G., 1985: ‘Estimating the reliability of climate model projections - steps toward a solution.’ In The Potential Climatic Effects of Increasing Carbon Dioxide, eds., M. C. Maracken and M. Luther, DOE/ER-0237, U.S. Department of Energy, Washington, D.C., available from NTIS, Springfield, Virginia.

    Google Scholar 

  • Hall, M. C. G., D. G. Cacuci and M. E. Schlesinger, 1982: ‘Sensitivity analysis of a radiative-convective model by the adjoint method.’ J. Atmos. Sci., 39, 2038–2050.

    Article  Google Scholar 

  • Han, 1988: ‘Modelling and simulation of the general circulation of the ocean.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. I, M. E. Schlesinger, ed., Kluwer Academic Publishers, 465–508.

    Google Scholar 

  • Hansen, J., 1979: Results presented in Carbon Dioxide and Climate: A Scientific Assessment, Report of an Ad Hoc Study Group on Carbon Dioxide and Climate. Climate Res. Board, Natl. Acad. Sci., Washington, D.C.

    Google Scholar 

  • Hansen, J., D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind and G. Russell, 1981: ‘Climate impact of increasing atmospheric carbon dioxide.’Science, 213, 957–966.

    Article  Google Scholar 

  • Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy and J. Lerner, 1984: ‘Climate sensitivity: Analysis of feedback mechanisms.’ In Climate Processes and Climate Sensitivity, Maurice Ewing Series, 5, eds., J. E. Hansen and T. Takahashi, American Geophysical Union, Washington, D.C., 130–163.

    Google Scholar 

  • Hummel, J. R., 1982: ‘Surface temperature sensitivities in a multiple cloud radiative-convective model with a constant and pressure dependent lapse rate.’ Tellus, 34, 203–208.

    Article  Google Scholar 

  • Hummel, J. R., and W. R. Kuhn, 1981a: ‘Comparison of radiative-convective models with constant and pressure-dependent lapse rates.’ Tellus, 33, 254–261.

    Article  Google Scholar 

  • Hummel, J. R., and W. R. Kuhn, 1981b: ‘An atmospheric radiative-convective model with interactive water vapor transport and cloud development.’ Tellus, 33, 372–381.

    Article  Google Scholar 

  • Hummel, J. R., and R. A. Reck, 1981: ‘Carbon dioxide and climate: The effects of water transport in radiative-convective models.’ J. Geophys. Res., 86, 12,035–12,038.

    Article  Google Scholar 

  • Hunt, B. G., 1981: ‘An examination of some feedback mechanisms in the carbon dioxide climate problem.’ Tellus, 33, 78–88.

    Article  Google Scholar 

  • Hunt, B. G., and N. C. Wells, 1979: ‘An assessment of the possible future climatic impact of carbon dioxide increases based on a coupled one-dimensional atmospheric-oceanic model.’ J. Geophys. Res., 84, 787–791.

    Article  Google Scholar 

  • Idso, S. B., 1980: ‘The climatological significance of a doubling ofearth’s atmospheric carbon dioxide concentration.’ Science, 207, 1462–1463.

    Article  Google Scholar 

  • Jenne, R. L., 1975: ‘Data sets for meteorological research.’ NCAR-TN/IA-111, National Center for Atmospheric Research, Boulder, CO, 194 pp.

    Google Scholar 

  • Kiehl, J. T., and V. Ramanathan, 1982: ‘Radiative heating due to increased CO2: The role of H2O continuum absorption in the 12-ym region.’ J. Atmos. Sci., 39, 2923–2926.

    Article  Google Scholar 

  • Lai, M., and V. Ramanathan, 1984: ‘The effects of moist convection and water vapor radiative processes on climate sensitivity.’ J. Atmos. Sci., 41, 2238–2249.

    Article  Google Scholar 

  • Lindzen, R. S., A. Y. Hou and B. F. Farrell, 1982: ‘The role of convective model choice in calculating the climate impact of doubling CO2.’ J. Atmos. Sci., 39, 1189–1205.

    Article  Google Scholar 

  • Luther, F. M., 1984: ‘The Intercomparison of Radiation Codes in Climatic Models (ICRCCM): Longwave Clear-Sky Calculations.’ World Climate Research Programme, WCP-93, International Council of Scientific Unions and World Meteorological Organization, Geneva, Switzerland, 37 pp.

    Google Scholar 

  • Manabe, S., 1971: ‘Estimate of future changes in climate due to increase of carbon dioxide concentration in the air.’ In Man’s Impact on the Climate, eds., W. H. Mathews, W. W. Kellogg and G. D. Robinson, MIT Press, Cambridge, MA, 249–264.

    Google Scholar 

  • Manabe, S., and R. J. Stouffer, 1979: ‘A CO2-climate sensitivity study with a mathematical model of the global climate.’ Nature, 282, 491–493.

    Article  Google Scholar 

  • Manabe, S., and R. J. Stouffer, 1980: ‘Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere.’ J. Geophys. Res., 85, 5529–5554.

    Article  Google Scholar 

  • Manabe, S., and R. F. Strickler, 1964: ‘Thermal equilibrium of the atmosphere with a convective adjustment.’ J. Atmos. Sci., 21, 361–385.

    Article  Google Scholar 

  • Manabe, S., and R. T. Wetherald, 1967: ‘Thermal equilibrium of the atmosphere with a given distribution of relative humidity.’ J. Atmos. Sci., 24, 241–259.

    Article  Google Scholar 

  • Manabe, S., and R. T. Wetherald, 1975: ‘The effects of doubling the CO2 concentration on the climate of a general circulation model.’ J. Atmos. Sci., 32, 3–15.

    Article  Google Scholar 

  • Manabe, S., and R. T. Wetherald, 1980: ‘On the distribution of climate change resulting from an increase in CO2-content of the atmosphere.’ J. Atmos. Sci., 37, 99–118.

    Article  Google Scholar 

  • Manabe, S., J. Smagorinsky and R. F. Strickler, 1965: ‘Simulated climatology of a general circulation model with a hydrological cycle.’ Mon. Wea. Rev., 93, 769–798.

    Article  Google Scholar 

  • McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz and J. S. Garing, 1971: ‘Optical properties of the atmosphere.’ AFCRL-71—0279, Air Force Cambridge Research Laboratories, Bedford, MA, 85 pp.

    Google Scholar 

  • Möller, F., 1963: ‘On the influence of changes in CO2 concentration in air on the radiative balance of the earth’s surface and on the climate.’ J. Geophys. Res., 68, 3877–3886.

    Google Scholar 

  • Newell, R. E., and T. G. Dopplick, 1979: ‘Questions concerning the possible influence of anthropogenic CO2 on atmospheric temperature.’ J. Appl. Meteor., 18, 822–825.

    Article  Google Scholar 

  • Nordhaus, W. D., and G. W. Yohe, 1983: ‘Future paths of energy and carbon dioxide emissions.’ In Changing Climate, National Academy of Sciences, Washington, D.C., 87–153.

    Google Scholar 

  • North, G. R., 1975: ‘Theory of energy-balance climate models.’ J. Atmos. Sci., 32, 2033–2043.

    Article  Google Scholar 

  • Oort, A. H., and E. Rasmusson, 1971: ‘Atmospheric Circulation Statistics.’ NOAA Prof. Paper No. 5, 323 pp.

    Google Scholar 

  • Plass, G. N. 1956: ‘The influence of the 15y carbon-dioxide band on the atmospheric infra-red cooling rate.’ Quart. J. Roy. Meteor. Soc., 82, 310–324.

    Article  Google Scholar 

  • Privett, D. W., 1960: ‘The exchange of energy between the atmosphere and the oceans of the Southern Hemisphere.’ Geophys. Memo, 13, No. 104, United Kingdom Meteorological Office, London, 61 pp.

    Google Scholar 

  • Ramanathan, V., M. S. Lian and R. D. Cess, 1979: ‘Increased atmospheric CO2: Zonal and seasonal estimates of the effects on the radiation energy balance and surface temperature.’ J. Geophys. Res., 84, 4949–4958.

    Article  Google Scholar 

  • Rasool, S. I., and S. H. Schneider, 1971: ‘Atmospheric carbon dioxide and aerosols: Effects of large increases on global climate.’ Science, 173, 138–141.

    Article  Google Scholar 

  • Reck, R. A., 1979a: ‘Comparison of fixed cloud-top temperature and fixed cloud-top altitude approximations in the Manabe-Wetheraid radiative-convective atmospheric model.’ Tellus, 31, 400–405.

    Article  Google Scholar 

  • Reck, R. A., 1979b: ‘Carbon dioxide and climate: Comparison of one- and three-dimensional models.’ Environment International, 2, 387–391.

    Article  Google Scholar 

  • Rotty, R. M., 1983: ‘Distribution of and changes in industrial carbon dioxide production.’ J. Geophys. Res., 88, 1301–1308.

    Article  Google Scholar 

  • Rowntree, P. R., and J. Walker, 1978: ‘The effects of doubling the CO2 concentration on radiative-convective equilibrium.’ In Carbon Dioxide, Climate and Society, ed., J. Williams, Pergamon, Oxford, 189–191.

    Google Scholar 

  • Saker, N. J., 1975: ‘An 11-layer general circulation model.’ Met 020 Tech. Note No. 11/30, United Kingdom Meteorological Office, Bracknell.

    Google Scholar 

  • Schlesinger, M. E., 1984: ‘Atmospheric general circulation model simulations of the modern Antarctic climate.’ In Environment of West Antarctica: Potential CO2-Induced Change, National Research Council, National Academy Press, Washington, D.C., 155–196.

    Google Scholar 

  • Schlesinger, M. E., and J. F. B. Mitchell, 1985: ‘Model projections of the equilibrium climatic response to increased CO2.’ In The Potential Climatic Effects of Increasing Carbon Dioxide, eds., M. C. Maracken and F. M. Luther, DOE/ER-0237, U.S. Department of Energy, Washington, D.C., 81–147. (Available from NTIS, Springfield, Virginia.)

    Google Scholar 

  • Schlesinger, M. E., and J. F. B. Mitchell, 1987: ‘Climate model simulations of the equilibrium climatic response to increased carbon dioxide.’ Rev, of Geophys., 25, 760–798.

    Article  Google Scholar 

  • Schneider, S. H., 1972: ‘Cloudiness as a global climatic feedbackmechanism: The effects on the radiation balance and surface temperature of variations in cloudiness.’ J. Atmos. Sci., 29, 1413–1422.

    Article  Google Scholar 

  • Schneider, S. H., 1975: ‘On the carbon dioxide-climate confusion.’ J. Atmos. Sci., 32, 2060–2066.

    Article  Google Scholar 

  • Sellers, W. D., 1969: ‘A global climate model based on the energy balance of the earth-atmosphere system.’ J. Appl. Meteor., 8, 392–400.

    Article  Google Scholar 

  • Simmonds and Bengtsson, 1988: ‘Atmospheric general circulation models: Their design and use for climate studies.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. I, M. E. Schlesinger, ed., Kluwer Academic Publishers, 23–76.

    Google Scholar 

  • Somerville, R. C. J., and L. A. Remer, 1984: ‘Cloud optical thickness feedbacks in the CO2 climate problem.’ J. Geophys. Res., 89, 9668–9672.

    Article  Google Scholar 

  • Spelman, M. J., and S. Manabe, 1984: ‘Influence of oceanic heat transport upon the sensitivity of a model climate.’ J. Geophys. Res., 89, 571–586.

    Article  Google Scholar 

  • Stephens, G. L., 1978: ‘Radiation profiles in extended water clouds, 2, Parameterization schemes.’ J. Atmos. Sci., 35, 2123–2132.

    Article  Google Scholar 

  • Stephens, G. L., and P. J. Webster, 1981: ‘Clouds and climate: Sensitivity of simple systems.’ J. Atmos. Sci., 38, 235–247.

    Article  Google Scholar 

  • Stephens, G. L., S. Ackerman and E. A. Smith, 1984: ‘A shortwave parameterization revised to improve cloud absorption.’ J. Atmos. Sci., 41, 687–690.

    Article  Google Scholar 

  • Stone, P. H., 1978: ‘Baroclinic adjustment.’ J. Atmos. Sci., 35, 561–571.

    Article  Google Scholar 

  • Stone, P. H., and J. H. Carlson, 1979: ‘Atmospheric lapse rate regimes and their parameterizations.’ J. Atmos. Sci., 36, 415–423.

    Article  Google Scholar 

  • Wang, W.-C., and P. H. Stone, 1980: ‘Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective model.’ J. Atmos. Sci., 37, 545–552.

    Article  Google Scholar 

  • Wang, W.-C., W. B. Rossow, M. S. Yao and M. Wolfson, 1981: Climate sensitivity of a one-dimensional radiative-convective model with cloud feedback.’ J. Atmos. Sci., 38, 1167–1178.

    Article  Google Scholar 

  • Washington, W. M., and G. A. Meehl, 1983: ‘General circulation model experiments on the climatic effects due to a doubling and quadrupling of carbon dioxide concentration.’ J. Geophys. Res., 88, 6600–6610.

    Article  Google Scholar 

  • Washington, W. M., and G. A. Meehl, 1984: ‘Seasonal cycle experiment on the climate sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed-layer ocean model.’ J. Geophys. Res., 89, 9475–9503.

    Article  Google Scholar 

  • Wetherald, R. T., and S. Manabe, 1981: ‘Influence of seasonal variation upon the sensitivity of a model climate.’ J. Geophys. Res., 86, 1194–1204.

    Article  Google Scholar 

  • Wetherald, R. T., and S. Manabe, 1986: ‘An investigation of cloud cover change in response to thermal forcing.’ Climatic Change, 8, 5–23.

    Article  Google Scholar 

  • Yang, S.-K., and G. L. Smith, 1985: ‘Further study on atmospheric lapse rate regimes.’ J. Atmos. Sci., 42, 961–965.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schlesinger, M.E. (1988). Quantitative Analysis of Feedbacks in Climate Model Simulations of CO2-Induced Warming. In: Schlesinger, M.E. (eds) Physically-Based Modelling and Simulation of Climate and Climatic Change. NATO ASI Series, vol 243. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3043-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3043-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7868-9

  • Online ISBN: 978-94-009-3043-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics