Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 243))

Abstract

The problem of cumulus parameterization in large-scale models is discussed. Several popular current schemes for penetrative and shallow convection are described and verified in semi-prognostic tests and in a full global forecast model. The results from the global experiments, in particular, indicate uncertainties in the parameterizations of penetrative and shallow convection, as well as in the interaction of cumulus cloud fields with radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht, B. A., 1981: ‘Parameterization of trade-cumulus amounts.’ J. Atmos. Sci., 38, 97–105.

    Article  Google Scholar 

  • Albrecht, B. A., A. K. Betts, W. H. Schubert and S. K. Cox, 1979: ‘A model of the thermodynamic structure of the trade-wind boundary layer: Part I. Theoretical formulation and sensitivity tests.’ J. Atmos. Sci., 36, 73–89.

    Article  Google Scholar 

  • Anthes, R. A., 1977: ‘A cumulus parameterization scheme utilizing a one-dimensional cloud model.’ Mon. Wea. Rev., 105, 270–286.

    Article  Google Scholar 

  • Arakawa, A., and W. H. Schubert, 1974 ‘Interaction of a cumulus cloud ensemble with the large-scale environment: Part I.’ J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Augstein, E., H. Riehl, F. Ostapoff and V. Wagner, 1973: ‘Mass and energy transports in an undisturbed Atlantic trade-wind flow.’ Mon. Wea. Rev., 101, 101–111.

    Article  Google Scholar 

  • Augstein, E., and M. Wendel, 1980: ‘Modelling of the time-dependent atmospheric tradewind boundary layer with non-precipitating cumulus clouds.’ Beitr. Phys. Atmos., 53, 509–537.

    Google Scholar 

  • Betts, A. K., 1973: ‘Non-precipitating cumulus convection and its parameterization.’ Quart. J. Roy. Met. Soc., 99, 178–196.

    Article  Google Scholar 

  • Betts, A. K., 1974: ‘Thermodynamic classification of tropical convective soundings.’ Mon. Wea. Rev., 102, 760–764.

    Article  Google Scholar 

  • Betts, A. K., 1975: ‘Parametric interpretation of trade-wind cumulus budget studies.’ J. Atmos. Sci., 32, 1934–1945.

    Article  Google Scholar 

  • Betts, A. K., and M. J. Miller, 1984: ‘A new convective adjustment scheme.’ ECMWF Technical Report No. 43, 65 pp.

    Google Scholar 

  • Bougeault, Ph., 1981: ‘Modelling the trade-wind cumulus boundary layer. Part II: A high-order one-dimensional model.’ J. Atmos. Sci., 38, 2429–2439.

    Article  Google Scholar 

  • Charney, J. G., and A. Eliassen, 1964: ‘On the growth of the hurricane depression.’ J. Atmos. Sci., 21, 68–75.

    Article  Google Scholar 

  • Cho, H.-R., and Y. Ogura, 1974: ‘A relationship between cloud activity and the low-level convergence as observed in Reed-Recker’s composite easterly waves.’ J. Atmos. Sci., 31, 2058–2065.

    Article  Google Scholar 

  • Corby, G. A., A. Gilchrist and R. L. Newson, 1972: ‘A general circulation model of the atmosphere suitable for long period integrations.’ Quart. J. Roy. Meteor. Soc., 98, 809–832.

    Article  Google Scholar 

  • Donner, L. J., H.-L. Kuo and E. J. Pitcher, 1982: ‘The significance of thermodynamic forcing by cumulus convection in a general circulation model.’ J. Atmos. Sci., 39, 2159–2181.

    Article  Google Scholar 

  • Esbensen, S. L., and Y. Kushnir., 1981: ‘The heat budget of the global ocean. An atlas based on estimates from surface marine observations.’ Climatic Research Institute, Report No. 29, Oregon State University, Corvallis, Oregon, 21 pp.

    Google Scholar 

  • Frank, W. M. 1983: ‘The cumulus parameterization problem.’ Mon. Wea. Rev., 111, 1859–1871.

    Article  Google Scholar 

  • Fritsch, J. M., C. F. Chappell and L. R. Hoxit, 1976: ‘The use of large-scale budgets for convective parameterization.’ Mon. Wea. Rev., 104, 1408–1418.

    Article  Google Scholar 

  • Geleyn, J.-F., 1985: ‘On a simple, parameter-free partition between moistening and precipitation in the Kuo scheme.’ Mon. Wea. Rev., 113, 405–408.

    Article  Google Scholar 

  • Hammarstrand, U., 1977: ‘On parameterization of convection for large-scale forecasts at mid-latitudes.’ Beitr. Phys. Atmos., 50, 78–88.

    Google Scholar 

  • Holland, J. Z., and E. M. Rasmusson 1973: ‘Measurements of the atmospheric mass, energy and momentum budgets over a 500 km square of tropical ocean.’ Mon. Wea. Rev., 101, 44–55.

    Article  Google Scholar 

  • Houze, R. A., and A. K. Betts, 1981: ‘Convection in GATE.’ Rev. Geophys. Space Phys., 19, 541–576.

    Article  Google Scholar 

  • Jaeger, L., 1976: ‘Monatskarten des Niederschlages für die ganze Erde.’ Ber. Deutsch. Wetterd., Offenbach/Main, Nr. 139, Vol. 18, 38 pp.

    Google Scholar 

  • Krishnamurti, T. N., S. Low-Nam and R. Pasch, 1983: ‘Cumulus parameterization and rainfall rates II.’ Mon. Wea. Rev., 111, 815–828.

    Article  Google Scholar 

  • Kuo, H. L., 1965: ‘On formation and intensification of tropical cyclones through latent heat release by cumulus convection.’ J. Atmos. Sci., 22, 40–63.

    Article  Google Scholar 

  • Kuo, H. L., 1974: ‘Further studies of the parameterization of the influence of cumulus convection of large-scale flow.’ J. Atmos. Sci., 31, 1232–1240.

    Article  Google Scholar 

  • Kuo, Y.-H., and R. A. Anthes, 1984: ‘Semi-prognostic tests of Kuo-type cumulus parameterization schemes in an extratropical convective system.’ Mon. Wea. Rev., 112, 1498–1509.

    Article  Google Scholar 

  • Kurihara, Y., 1973: ‘A scheme of moist convective adjustment.’ Mon. Wea. Rev., 101, 547–553.

    Article  Google Scholar 

  • Lee, C.-S., 1984: ‘The bulk effects of cumulus momentum transports in tropical cyclones.’ J. Atmos. Sci., 41, 590–603.

    Article  Google Scholar 

  • Le Mone, M. A., and W. T. Pennell, 1976: ‘The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure.’ Mon. Wea. Rev., 104, 524–539.

    Article  Google Scholar 

  • Lord, S. J., 1982: ‘Interaction of a cumulus cloud ensemble with the large-scale environment. Part III: Semi-prognostic test of the Arakawa-Schubert cumulus parameterization.’ J. Atmos. Sci., 39, 88–103.

    Article  Google Scholar 

  • Lord, S. J., and A. Arakawa, 1980: ‘Interaction of a cumulus ensemble with the large-scale environment: Part II.’ J. Atmos. Sci., 37, 2677–2692.

    Article  Google Scholar 

  • Lord, S. J., W. C. Chao and A. Arakawa, 1982: ‘Interaction of a cumulus cloud ensemble with the large-scale environment. Part IV: The discrete model.’ J. Atmos. Sci., 39, 104–113.

    Article  Google Scholar 

  • Lowe, P. R., 1977: ‘An approximating polynomial for the computation of saturation vapor pressure.’ J. Appl. Meteor., 16, 100–103.

    Article  Google Scholar 

  • Manabe, S., J. S. Smagorinsky and R. F. Strickler, 1965: ‘Simulated climatology of a general circulation model with a hydrologic cycle.’ Mon. Wea. Rev., 93, 769–798.

    Article  Google Scholar 

  • Manabe, S., and J. S. Smagorinsky, 1967: ‘Simulated climatology of a general circulation model with hydrological cycle, II. Analysis of the tropical atmosphere.’ Mon. Wea. Rev., 95, 155–169.

    Article  Google Scholar 

  • Manton, M., 1984: ‘A parameterization of shallow cumulus convection.’ ECMWF Workshop on convection in large-scale models, 28 Nov. – 1 Dec. 1983, 109–138.

    Google Scholar 

  • Miller, M. J., 1986: ‘A new convective adjustment scheme and its impact on the ECMWF model.’ ECMWF Seminar on Physical Parameterization for Numerical Models, 9–13 Sept. 1985, Vol. 1, 149–180.

    Google Scholar 

  • Miyakoda, K., and J. Sirutis, 1977: ‘Comparative integrations of global models with various parameterized processes of subgrid-scale vertical transports: Description of the parameterizations.’ Beitr. Phys. Atmos., 50, 445–487.

    Google Scholar 

  • Mohanty, U. C., J. M. Slingo and M. Tiedtke, 1985: ‘Impact of modified physical processes on the tropical simulation of the ECMWF model.’ ECMWF, Technical Report No. 52, 44 pp.

    Google Scholar 

  • Molinari, J., 1982: ‘A method for calculating the effects of deep cumulus convection in numerical models.’ Mon. Wea. Rev., 110, 1527–1534.

    Article  Google Scholar 

  • Molinari, J., and T. Corsetti, 1985: ‘Incorporation of cloud-scale and mesoscale downdrafts into a cumulus parameterisation: Results of one- and three-dimensional integrations.’ Mon. Wea. Rev., 113, 485–501.

    Article  Google Scholar 

  • Nitta, T., 1978: ‘A diagnostic study of interaction of cumulus updrafts and downdrafts with large-scale motions in GATE.’ J. Meteor. Soc. Japan, 56, 232–242.

    Google Scholar 

  • Nitta, T., and S. Esbensen, 1974: ‘Heat and moisture budget analysis using BOMEX data.’ Mon. Wea. Rev., 102, 17–28.

    Article  Google Scholar 

  • Ogura, Y., and H.-R. Cho, 1973: ‘Diagnostic determination of cumulus cloud populations from large-scale variables.’ J. Atmos. Sci., 30, 1276–1286.

    Article  Google Scholar 

  • Ooyama, K., 1971: ‘A theory of parameterization of cumulus convection.’ J. Meteor. Soc. Japan, 49, 744–756.

    Google Scholar 

  • Payne, S. W., 1981: ‘The inclusion of moist downdraft effects in the Arakawa-Schubert cumulus parameterization.’ Fifth Conference on Numerical Weather Prediction, Nov. 2–6, 1981, Monterey, Calif., 277–284.

    Google Scholar 

  • Reed, R. J., and E. E. Recker, 1971: ‘Structure and properties of synoptic-scale wave disturbances in the equatorial Western Pacific.’ J. Atmos. Sci., 28, 1117–1133.

    Article  Google Scholar 

  • Riehl, H., T. C. Yeh, J. S. Malkus and N. E. La Seur, 1951: ‘The North-East trade of the Pacific Ocean.’ Quart. J. Roy. Meteor. Soc., 77, 598–626.

    Article  Google Scholar 

  • Riehl, H., and J. S. Malkus, 1957: ‘On the heat balance and maintenance of the circulation in the trades.’ Quart. J. Roy. Meteor. Soc., 83, 21–29.

    Article  Google Scholar 

  • Riehl, H., and J. S. Malkus, 1979: ‘The heat balance of the equatorial trough zone, revisited.’ Beitr. Phys. Atmos., 52, 287–305.

    Google Scholar 

  • Slingo, J. M., 1985: ‘Cloud cover experimentation with the ECMWF model.’ ECMWF Workshop on Cloud Cover Parameterization in Numerical Models, 26–28 Nov. 1984, 163–212.

    Google Scholar 

  • Sommeria, G., 1976: ‘Three-dimensional simulation of turbulent processes in an undisturbed trade wind boundary layer.’ J. Atmos. Sci., 33, 216–241.

    Article  Google Scholar 

  • Soong, S.-T., and Y. Ogura, 1980: ‘Response to tradewind cumuli to large-scale processes.’ J. Atmos. Sci., 37, 2035–2050.

    Article  Google Scholar 

  • Thompson, R. M., Jr., S. W. Payne, E. E. Recker and R. J. Reed, 1979: •Structure and properties of synoptic scale wave disturbances in the intertropical convergence zone of the Eastern Atlantic.’ J. Atmos. Sci., 36, 53–72.

    Article  Google Scholar 

  • Tiedtke, M., 1981: ‘Assessment of the PBL-flow in the EC-model.’ ECMWF Workshop on Planetary Boundary Layer Parameterization, 25–27 Nov. 1981, 155–191.

    Google Scholar 

  • Tiedtke, M., 1984a: ‘The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model.’ ECMWF Workshop on Convection in Large-scale Numerical Models, 28 Nov. – 1 Dec. 1983, 297–316.

    Google Scholar 

  • Tiedtke, M., 1984b: ‘The effect of penetrative cumulus convection on the large-scale flow in a general circulation model.’ Beitr. Phys. Atmos., 57, 216–239.

    Google Scholar 

  • Tiedtke, M., 1986: ‘Effect of physical parameterisation on the large-scale flow in the ECMWF model.’ ECMWF Seminar on Physical Parameterisation for Numerical Models, 9–13 Sept. 1985, Vol. 2, 277–314.

    Google Scholar 

  • Tiedtke, M., and J. Slingo, 1985: ‘Development of the operational parameterization scheme.’ ECMWF Tech. Memo. No. 108, 38 pp.

    Google Scholar 

  • Tracton, M. S., 1973: ‘The role of cumulus convection on the development of extratropical cyclones.’ Mon. Wea. Rev., 101, 573–593.

    Article  Google Scholar 

  • Wagner, V., 1975: ‘Relationships between the tropospheric circulation and energetic processes within the Hadley circulation over the Atlantic Ocean.’ Berichte Inst. Radiometeor. und Maritime Meteor. Univ. Hamburg, No. 26, 83 pp.

    Google Scholar 

  • Warner, J., 1955: ‘The water content of cumuliform cloud.’ Tellus, 8, 449–457.

    Article  Google Scholar 

  • Zipser, E. J., 1977: ‘Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation.’ Mon. Wea. Rev., 105, 1568–1589.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tiedtke, M. (1988). Parameterization of Cumulus Convection in Large-Scale Models. In: Schlesinger, M.E. (eds) Physically-Based Modelling and Simulation of Climate and Climatic Change. NATO ASI Series, vol 243. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3041-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3041-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7867-2

  • Online ISBN: 978-94-009-3041-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics