Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 243))

Abstract

A general review of atmospheric general circulation modelling is presented, with emphasis on the use of models for climate studies. The opening section briefly sets this type of modelling in the context of climate modelling as a whole. It is followed by two further sections of an introductory nature, these outlining the historical development of general circulation models and the processes of primary importance that must be taken into account in constructing them. Sections 4 and 5 then review the design of the models themselves, discussing both their numerical formulations for the solution of the basic adiabatic equations, and their parameterizations of a number of processes that cannot be explicitly described by the numerical form of the equations. Discussion of the use and performance of these models is prefaced by Section 6 which gives an account of the general predictability of the atmosphere. The following section describes the actual use to which models have been put in a number of climate studies, these ranging from the experimental prediction of monthly means to evaluation of the possible response of the longer-term climate to an increase in the carbon dioxide content of the atmosphere. The results of such studies must be judged in the light of the ability of the models to simulate the present climate, and this is discussed in Section 8. Some concluding remarks, including brief comment on the interpretation of model results, are given in Section 9.

Reprinted (with revisions) with permission form “The Global Climate” (J. T. Houghton, Ed.), Cambridge University Press, 1984, pp. 37–62.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allam, R. J., K. S. Groves and A. F. Tuck, 1981: ‘Global OH distribution derived from general circulation model fields of ozone and water vapour.’ J. Geophys. Res., 86, 5303–5320.

    Article  Google Scholar 

  • Anthes, R. A., 1977: ‘Hurricane model experiments with a new cumulus parameterisation scheme.’ Mon. Wea. Rev., 105, 287–300.

    Article  Google Scholar 

  • Arakawa, A, 1966: ‘Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part 1.’ J. Comp. Phys., 1, 119–143.

    Article  Google Scholar 

  • Arakawa, A., and Y. Mintz, 1974: ‘Workshop notes on the UCLA atmospheric general circulation model (24 March-4 April 1974).’ Department of Meteorology, University of California, Los Angeles, CA, 404 pp.

    Google Scholar 

  • Arakawa, A., and W. H. Schubert, 1974: ‘Interaction of a cumulus cloud ensemble with the large-scale environment.’ J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Arakawa, A., and V. R. Lamb, 1981: ‘A potential enstrophy and energy conserving scheme for the shallow water equations.’ Mon. Wea. Rev., 109, 18–36.

    Article  Google Scholar 

  • Arya, S. P. S., 1977: ‘Suggested revisions to certain boundary layer parameterization schemes used in atmospheric circulation models.’, Mon. Wea. Rev., 105, 215–227.

    Article  Google Scholar 

  • Bates, J. R., 1977: ‘Dynamics of stationary, ultra-long waves in middle latitudes.’ Quart. J. Roy. Met. Soc., 103, 397–430.

    Article  Google Scholar 

  • Bates, J. R., and A. McDonald, 1982: ‘Multiple-upstream semi-Lagrangian advective schemes: Analysis and application to a multi-level primitive-equation model.’ Mon. Wea. Rev., 110, 1831–1842.

    Article  Google Scholar 

  • Bengtsson, L., 1981a: ‘Review of recent progress made in medium range weather forecasting.’ In Proceedings of the ECMWF Seminar on Problems and Prospects in Long and Medium Range Weather Forecasting, pp. 91–112.

    Google Scholar 

  • Bengtsson, L., 1981b: ‘Numerical prediction of atmospheric blocking – a case study.’ Tellus, 33, 19–42.

    Article  Google Scholar 

  • Bengtsson, L., and A. J. Simmons, 1983: ‘Medium range weather prediction – operational experience at ECMWF.’ In Large-Scale Dynamical Processes in the Atmosphere, eds. B. J. Hoskins and R. P. Pearce, Academic Press, pp. 337–363.

    Google Scholar 

  • Bhumralkar, C. M., 1976: ‘Parameterization of the planetary boundary layer in atmospheric general circulation models.’ Rev. Geophys. Space Phys., 14, 2, 215–226.

    Article  Google Scholar 

  • Bjerknes, J., 1966: ‘A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature.’ Tellus, 18, 820–829.

    Article  Google Scholar 

  • Bjerknes, J., 1969: ‘Atmospheric teleconnections from the equatorial Pacific.’ Mon. Wea. Rev., 97, 163–172.

    Article  Google Scholar 

  • Blackmon, M. L., and N.-C. Lau, 1980: ‘Regional characteristics of the northern hemisphere wintertime circulation: A comparison of the simulation of a GFDL general circulation model with observations.’ J. Atmos. Sci., 37, 497–514.

    Article  Google Scholar 

  • Blackmon, M. L., J. M. Wallace, N.-C. Lau and S. L. Mullen, 1977: ‘An observational study of the northern hemisphere wintertime circulation.’ J. Atmos. Sci., 34, 1040–1053.

    Article  Google Scholar 

  • Blackmon, M. L., J. E. Geisler and E. J. Pitcher, 1983: ‘A general circulation model study of January climate anomaly patterns associated with interannual variation of equatorial Pacific sea surface temperatures.’ J. Atmos. Sci., 40, 1410–1425.

    Article  Google Scholar 

  • Bourke, W., 1972: ‘An efficient one-level primitive-equation spectral model.’ Mon. Wea. Rev., 100, 683–689.

    Article  Google Scholar 

  • Bourke, W., 1974: ‘A multi-level spectral model: I. Formulation and hemispheric integrations.’ Mon. Wea. Rev., 102, 688–701.

    Article  Google Scholar 

  • Bryan, K., 1969: ‘Climate and ocean circulation: III. Ocean model.’ Mon. Wea. Rev., 97, 806–827.

    Article  Google Scholar 

  • Bryan, K., F. G. Komro, S. Manabe and M. J. Spelman, 1982: ‘Transient climate response to increasing atmospheric carbon dioxide.’ Science, 215, 56–59.

    Article  Google Scholar 

  • Burridge, D. M., 1975: ‘A split semi-implicit reformulation of the Bushby-Timpson 10-level model.’ Quart. J. Roy. Met. Soc., 101, 777–792.

    Google Scholar 

  • Burridge, D. M., 1979: ‘Some aspects of large scale numerical modelling of the atmosphere.’ In Proceedings of ECMWF Seminar on Dynamical Meteorology and Numerical Weather Prediction, 2, pp. 1–78.

    Google Scholar 

  • Burridge, D. M., and J. Haseler, 1977: ‘A model for medium range weather forecasting – adiabatic formulation.’ ECMWF Technical Report No. 4, 46 pp.

    Google Scholar 

  • Chao, J.-P., Y.-F. Guo and R.-U. Xin, 1982: ‘A theory and method of long-range numerical weather forecasts.’ J. Met. Soc. Japan, 60, 282–291.

    Google Scholar 

  • Charney, J. G., 1947: ‘The dynamics of long waves in a baroclinic westerly current.’ J. Meteor., 4, 135–162.

    Article  Google Scholar 

  • Charney, J. G., 1975: ‘Dynamics of deserts and droughts in the Sahel.’ Quart. J. Roy. Met. Soc., 101, 193–202.

    Article  Google Scholar 

  • Charney, J. G., and A. Eliassen, 1949: ‘A numerical method for predicting the perturbations of middle latitude westerlies.’ Tellus, 1, 38–54.

    Article  Google Scholar 

  • Charney, J. G., and J. G. Dore, 1979: ‘Multiple flow equilibria and blocking.’ J. Atmos Sci., 36, 1205–1216.

    Article  Google Scholar 

  • Charney, J. G., and N. A. Phillips, 1953: ‘Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows.’ J. Meteor., 10, 71–99.

    Article  Google Scholar 

  • Charney, J. G., and J. Shukla, 1981: ‘Predictability of monsoons.’ In Monsoon Dynamics, eds. M. J. Lighthill and R. P. Pearce, Cambridge University Press, pp. 99–109.

    Google Scholar 

  • Charney, J. G., R. Fjörtoft and J. von Neumann, 1950: ‘Numerical integration of the barotropic vorticity equation.’ Tellus, 2, 237–254.

    Article  Google Scholar 

  • Charney, J. G., R. G. Fleagle, V. E. Lally, H. Riehl and D. Q. Wark, 1966: ‘The feasibility of a global observation and analysis experiment.’ Bull. Amer. Met. Soc., 47, 200–220.

    Google Scholar 

  • Charney, J. G., W. J. Quirk, S. Chow and J. Kornfield, 1977: ‘A comparative study of the effects of albedo change on drought in semi-arid regions.’ J. Atmos Sci., 34, 1366–1385.

    Article  Google Scholar 

  • Chervin, R. M., J. E. Kutzbach, D. D. Houghton and R. G. Gallimore, 1980: ‘Response of the NCAR general circulation model to prescribed changes in ocean surface temperature. Part II: Midlatitude and subtropical changes.’ J. Atmos. Sci., 37, 308–332.

    Article  Google Scholar 

  • Corby, G. A., A. Gilchrist and R. L. Newson, 1972: ‘A general circulation model of the atmosphere suitable for long period integrations.’ Quart. J. Roy. Met. Soc., 98, 809–832.

    Article  Google Scholar 

  • Cubasch, U., 1981a: ‘Preliminary assessment of long-range Integrations done with the ECMWF global model.’ ECMWF Technical Memorandum No. 28, 21 pp.

    Google Scholar 

  • Cubasch, U., 1981b: ‘The performance of the ECMWF model in 50-day integrations.’ ECMWF Technical Memorandum No. 32., 74 pp.

    Google Scholar 

  • Cullen, M. J. P., 1974: ‘Integrations of the primitive equations on a sphere using the finite element method.’ Quart. J. Roy. Met. Soc., 100, 555–562.

    Article  Google Scholar 

  • Cunnold, D., F. Alyea, N. A. Phillips and R. Prinn, 1975: ‘A three-dimensional dynamical-chemical model of atmospheric ozone.’ J. Atmos. Sci., 32, 172–194.

    Google Scholar 

  • Daley, R., and Y. Bourassa, 1978: ‘Rhomboidal versus triangular spherical harmonic truncation: Some verification statistics.’ Atmosphere-Ocean, 16, 187–196.

    Article  Google Scholar 

  • Daley, R., C. Girard, J. Henderson and I. Simmonds, 1976: ‘Short term forecasting with a multi-level spectral primitive-equation model.’ Atmosphere, 14, 98–134.

    Google Scholar 

  • Deardorff, J., 1978: ‘Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation.’ J. Geophys. Res., 83, 1889–1903.

    Article  Google Scholar 

  • Delsol, F., K. Miyakoda and R. H. Clarke, 1971: ‘Parameterized processes in the surface boundary layer of an atmospheric circulation model.’ Quart. J. Roy. Met. Soc., 97, 181–208.

    Article  Google Scholar 

  • Dey, C. H., 1969: ‘A note on global forecasting with the Kurihara grid.’ Mon. Wea. Rev., 97, 597–601.

    Article  Google Scholar 

  • Driedonks, A. G. M., and H. Tennekes, 1981: ‘Parameterization of the atmospheric boundary layer in large-scale models.’ Bull. Amer. Met. Soc., 62, 594–598.

    Article  Google Scholar 

  • Druyan, L. M., R. C. J. Somerville, and W. J. Quirk, 1975: ‘Extended-range forecasts with the GISS model of the global atmosphere.’ Mon. Wea. Rev., 103, 779–795.

    Article  Google Scholar 

  • Eady, E. T., 1949: ‘Long waves and cyclone waves.’ Tellus, 1, 33–52.

    Article  Google Scholar 

  • ECMWF, 1981: Proceedings of a Workshop on Radiation and Cloud-Radiation Interaction in Numerical Modelling, 209 pp.

    Google Scholar 

  • Egger, J., 1977: ‘On the linear theory of the atmospheric response to sea surface temperature anomalies.’ J. Atmos. Sci., 34, 603–614.

    Article  Google Scholar 

  • Eliasen, E., B. Machenhauer and E. Rasmussen, 1970: ‘On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields.’ Inst, of Theor. Met., Univ. of Copenhagen, Report No. 2.

    Google Scholar 

  • Fels, S. B., D. J. Mahlman, M. D. Schwarzkopf and R. W. Sinclair, 1980: ‘Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response.’ J. Atmos. Sci., 37, 2265–2297.

    Article  Google Scholar 

  • Gadd, A. J., 1978: ‘A split explicit integration scheme for numerical weather prediction.’ Quart. J. Roy. Met. Soc., 104, 569–582.

    Article  Google Scholar 

  • GARP, 1972: ‘Parameterization of sub-grid scale processes.’ GARP Publication Series No. 8, WMO/ICSU, Geneva.

    Google Scholar 

  • GARP, 1974: ‘Modelling for the first GARP global experiment.’ GARP Publication Series No. 14, WMO/ICSU, Geneva.

    Google Scholar 

  • GARP, 1975: ‘The physical basis of climate and climate modelling.’ GARP Publication Series No. 16, WMO/ICSU, Geneva.

    Google Scholar 

  • GARP, 1976: ‘Numerical methods used in atmospheric models.’ GARP Publication Series No. 17, WMO/ICSU, Geneva.

    Google Scholar 

  • GARP, 1978: ‘Numerical modelling of the tropical atmosphere.’ GARP Publication Series No. 20, WMO/ICSU, Geneva.

    Google Scholar 

  • GARP. 1979: ‘Report of the JOC study conference on climate models: Performance, intercomparison and sensitivity studies.’ GARP Publication Series No. 22, WMO/ICSU, Geneva.

    Google Scholar 

  • Gary, J. M., 1973: ‘Estimate of truncation error in transformed coordinate, primitive equation atmospheric models.’ J. Atmos. Sci., 30, 223–233.

    Article  Google Scholar 

  • Gates, W. L., 1976: ‘The numerical simulation of ice-age climate with a global general circulation model.’ J. Atmos. Sci., 33, 1844–1873.

    Article  Google Scholar 

  • Gates, W. L., 1979: ‘The physical basis of climate.’ Proceedings of the World Climate Conference, WMO, Geneva, pp. 112–131

    Google Scholar 

  • Gates, W. L., E. S. Batten, A. B. Kahle and A. B. Nelson, 1971: A documentation of the Mintz-Arakawa two-level atmospheric general circulation model. R-877-ARPA, The Rand Corporation, 408 pp.

    Google Scholar 

  • Gates, W. L., K. H. Cook and M. E. Schlesinger, 1981: ‘Preliminary analysis of experiments on the climatic effects of increased CO2 with an atmospheric general circulation model and a climatological ocean.’ J. Geophys. Res., 86, 6385–6393.

    Article  Google Scholar 

  • Gates, W. L., Y.-J. Han and M. E. Schlesinger, 1985: ‘The global climate simulated by a coupled atmosphere-ocean general circulation model: Preliminary results.’ In Coupled Ocean-Atmosphere Models, ed. J. C. J. Nihoul, Elsevier, pp. 131–151.

    Chapter  Google Scholar 

  • Gauntlett, D. J., L. M. Leslie and D. R. Hincksman, 1976: ‘A semi-implicit forecast model using the flux form of the primitive equations.’ Quart. J. Roy. Met. Soc., 12, 203–217.

    Article  Google Scholar 

  • Geleyn, J.-F., A. Hense and H. J. Preuss, 1982a: ‘A comparison of model generated radiation fields with satellite measurements.’ Beitr. Phys. Atmosph., 55, 253–286.

    Google Scholar 

  • Geleyn, J.-F., C. Girard and J.-F. Louis, 1982b: ‘A simple parameterization of moist convection for large-scale atmospheric models.’ Beitr. Phys. Atmosph., 55, 325–334.

    Google Scholar 

  • Gerrity, J. P., R. D. McPherson and P. D. Polger, 1972: ‘On the efficient reduction of truncation error in numerical weather prediction models.’ Mon. Wea. Rev., 100, 637–643.

    Article  Google Scholar 

  • Gilchrist, A., 1977a: ‘An experiment in extended range prediction using a general circulation model and including the influence of sea-surface temperature anomalies.’ Beitr, Phys. Atmos., 50, 25–40.

    Google Scholar 

  • Gilchrist, A., 1977b: ‘The simulation of the Asian Summer Monsoon.’ Pure and Applied Geophys., 115, 1431–1438.

    Article  Google Scholar 

  • Gilchrist, A., 1981a: ‘Long-range forecasting in the Meteorological Office.’ Proceedings of the ECMWF Seminar on Problems and Prospects in Long and Medium Range Weather Forecasting, pp. 21–90.

    Google Scholar 

  • Gilchrist, A., 1981b: ‘Simulation of the Asian summer monsoon by an 11-layer general circulation model.’ In Monsoon Dynamics, eds. M. J. Lighthill and R. P. Pearce, Cambridge University Press, pp. 131–145.

    Google Scholar 

  • Girard, C., and M. Jarraud, 1982: ‘Short and medium range forecast differences between a spectral and a grid-point model. An extensive quasi-operational comparison.’ ECMWF Technical Report No. 32., 178 pp.

    Google Scholar 

  • Green, J. S. A., 1977: ‘The weather during July 1976: Some dynamical considerations of the drought.’ Weather, 32, 120–125.

    Google Scholar 

  • Hahn, D. G., and S. Manabe, 1975: ‘The role of mountains in the south Asian monsoon circulation.’ J. Atmos. Sci., 32, 1515–1541.

    Article  Google Scholar 

  • Hahn, D. G., and J. Shukla, 1976: ‘An apparent relationship between Eurasian snow cover and Indian monsoon rainfall.’ J. Atmos. Sci., 33, 2461–2462.

    Article  Google Scholar 

  • Hendon, H. H., and D. L. Hartmann, 1982: ‘Stationary waves on a sphere: Sensitivity to thermal feedback.’ J. Atmos. Sci., 39, 1906–1920.

    Article  Google Scholar 

  • Herman, G. F., and W. T. Johnson, 1978: ‘The sensitivity of the general circulation to Arctic sea ice boundaries: A numerical experiment.’ Mon. Wea. Rev., 106, 1649–1664.

    Article  Google Scholar 

  • Herman, G. F., M.-L. C. Wu and W. T. Johnson, 1980: ‘The effect of clouds on the Earth’s solar and infra-red radiation budgets.’ J. Atmos. Sci., 37, 1251–1261.

    Article  Google Scholar 

  • Hollingsworth, A., K. Arpe, M. Tiedtke, M. Capaldo and H. Savijärvi, 1980: ‘The performance of a medium-range forecast model in winter – impact of physical parameterizations.’ Mon. Wea. Rev., 108, 1736–1773.

    Article  Google Scholar 

  • Holloway, J. L., and S. Manabe, 1971: ‘Simulation of climate by a global general circulation model: I. Hydrologic cycle and heat balance.’ Mon. Wea. Rev., 99, 335–370.

    Article  Google Scholar 

  • Holloway, J. L., M. J. Spelman and S. Manabe, 1973: ‘Latitude-longitude grid suitable for numerical time integration of a global atmospheric model.’ Mon. Wea. Rev., 101, 69–78.

    Article  Google Scholar 

  • Horel, J. D., and J. M. Wallace, 1981: ‘Planetary scale atmospheric phenomena associated with the interannual variability of sea-surface temperature in the equatorial Pacific.’ Mon. Wea. Rev., 109, 813–829.

    Article  Google Scholar 

  • Hoskins, B. J., and D. J. Karoly, 1981: ‘The steady linear response of a spherical atmosphere to thermal and orographic forcing.’ J. Atmos. Sci., 38, 1179–1196.

    Article  Google Scholar 

  • Hoskins, B. J., and A. J. Simmons, 1975: ‘A multi-layer spectral model and the semi-implicit method.’ Quart. J. Roy. Met. Soc., 101, 637–655.

    Article  Google Scholar 

  • Hoskins, B. J., I. James and G. H. White, 1983: ‘The shape, propagation and mean-flow interaction of large-scale weather systems’. J. Atmos. Sci., 40, 1595–1612.

    Article  Google Scholar 

  • Houghton, D. D., J. E. Kutzbach, M. McClintock and D. Suchman, 1974: ‘Response of a general circulation model to a sea-surface temperature perturbation.’ J. Atmos. Sci., 31, 857–868.

    Article  Google Scholar 

  • Hunt, B. G., 1978: ‘On the general circulation of the atmosphere without clouds.’ Quart. J. Roy. Met. Soc., 104, 91–102.

    Article  Google Scholar 

  • Hunt, B. G., 1981: ‘The maintenance of the zonal mean state of the upper atmosphere as represented in a three-dimensional general circulation model extending to 100 km.’ J. Atmos. Sci., 38, 2172–2186.

    Article  Google Scholar 

  • Janjic, Z. I., 1983: ‘Non-linear advection schemes and energy cascade on semi-staggered grids.’ Mon. Wea. Rev., 112, 1234–1245.

    Article  Google Scholar 

  • Julian, P. R., and R. M. Chervin, 1978: ‘A study of the southern oscillation and Walker circulation phenomena.’ Mon. Wea. Rev., 106, 1433–1451.

    Article  Google Scholar 

  • Kasahara, A., and W. M. Washington, 1967: ‘NCAR global general circulation model of the atmosphere.’ Mon. Wea. Rev., 95, 389–402.

    Article  Google Scholar 

  • Kalnay-Rivas, E., A. Bayliss and J. Storch, 1977: ‘The 4th order GISS model of the global atmosphere.’ Beitr Phys. Atmos., 50, 299–311.

    Google Scholar 

  • Keshavamurty, R. N., 1982: ‘Response of the atmosphere to sea surface temperature anomalies over the equatorial Pacific and the teleconnections of the Southern Oscillation.’ J. Atmos. Sci., 39, 1241–1259.

    Article  Google Scholar 

  • Kessler, E., 1969: ‘On the distribution and continuity of water substance in atmospheric circulations.’ Met. Monogr., 10, 1–84.

    Google Scholar 

  • Kirkwood, E., and J. Derome, 1977: ‘Some effects of the upper boundary condition and vertical resolution on modelling forced stationary planetary waves.’ Mon. Wea. Rev., 105, 1239–1251.

    Article  Google Scholar 

  • Köppen, W., 1931: ‘Grundriss der Klimakunde,’ Walter de Gruyter, Berlin.

    Google Scholar 

  • Krishnamurti, T. N., Y. Ramanathan, H.-L. Pan, R. J. Pasch and J. Molinari, 1980: ‘Cumulus parameterization and rainfall rates I. Mon. Wea. Rev., 108, 465–472.

    Article  Google Scholar 

  • Kuo, H. L., 1965: ‘On formation and intensification of tropical cyclones through latent heat release by cumulus convection.’ J. Atmos. Sci., 22, 40–63.

    Article  Google Scholar 

  • Kuo, H. L., 1974; ‘Further studies of the parameterization of the influence of cumulus convection on large-sale flow.’ J. Atmos. Sci., 31, 1232–1240.

    Article  Google Scholar 

  • Kurihara, Y., 1965: ‘Numerical integration of the primitive equations on a spherical grid.’ Mon. Wea. Rev., 93, 399–415.

    Article  Google Scholar 

  • Kurihara, Y., 1968: ‘Note on finite difference expressions for the hydrostatic relation and pressure gradient force.’ Mon. Wea. Rev., 96, 654–656.

    Article  Google Scholar 

  • Kutzbach, J. E., and B. L. Otto-Bliesner, 1982: ‘The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B.P. in a low-resolution general circulation model.’ J. Atmos. Sci., 39, 1177–1188.

    Article  Google Scholar 

  • Kutzbach, J. E., R. M. Chervin and D. D. Houghton, 1977: ‘Response of the NCAR general circulation model to prescribed changes in the ocean surface temperature. Part I: Mid-latitude changes.’ J. Atmos. Sci., 34, 1200–1213.

    Article  Google Scholar 

  • Lau, N.-C., 1981: ‘A diagnostic study of recurrent meteorological anomalies appearing in a 15-year simulation with a GFDL general circulation model.’ Mon. Wea. Rev., 109, 2287–2311.

    Article  Google Scholar 

  • Lilly, D. K., 1964: ‘Numerical solutions for the shape-preserving two-dimensional thermal convection element.’ J. Atmos. Sci., 21, 83–98.

    Article  Google Scholar 

  • Lindzen, R. S., E. S. Batten and J. W. Kim, 1968: ‘Oscillations in atmospheres with tops.’ Mon. Wea. Rev., 96, 133–140.

    Article  Google Scholar 

  • Lord, S. J., 1982: ‘Interaction of a cumulus cloud ensemble with the large-scale environment. Part III: Semi-prognostic test of the Arakawa-Schubert cumulus parameterization.’ J. Atmos. Sci., 39, 88–103.

    Article  Google Scholar 

  • Lorenz, E. N., 1975: ‘Climate Predictability.’ In GARP Publication Series No. 16, pp. 132–136.

    Google Scholar 

  • Lorenz, E. N., 1982: ‘Atmospheric predictability experiments with a large numerical model.’ Tellus, 34, 505–513.

    Article  Google Scholar 

  • Louis, J.-F., 1979: ‘A parametric model of vertical eddy fluxes in the atmosphere.’ Boundary-Layer Meteorol., 17, 187–202.

    Article  Google Scholar 

  • Louis, J.-F., M. Tiedtke and J.-F. Geleyn, 1981: ‘A short history of the PBL parameterization of ECMWF.’ Proceedings of ECMWF Workshop on Planetary Boundary Layer Parameterization, pp. 59–80.

    Google Scholar 

  • Machenhauer, B., 1979: ‘The spectral method.’ In GARP Publication Series No. 17, II, pp. 121–275.

    Google Scholar 

  • Machenhauer, B., and E. Rasmussen, 1972: ‘On the integration of the spectral hydrodynamical equations by a transform method.’ Inst, of Theor. Met., Univ. of Copenhagen, Report No. 4.

    Google Scholar 

  • Manabe, S., 1969: ‘Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the Earth’s surface.’ Mon. Wea. Rev., 97, 739–774.

    Article  Google Scholar 

  • Manabe, S., and D. G. Hahn, 1977: ‘Simulation of the tropical climate of an ice-age.’ J. Geophys.Res., 82, 3889–3911.

    Article  Google Scholar 

  • Manabe, S., and D. G. Hahn, 1981: ‘Simulation of atmospheric variability.’ Mon. Wea. Rev., 109, 2260–2286.

    Article  Google Scholar 

  • Manabe, S., and R. J. Stouffer, 1980: ‘Sensitivity of a global climate to an increase of CO2 concentration in the atmosphere.’ J. Geophys. Res., 85, 5529–5554.

    Article  Google Scholar 

  • Manabe, S., and R. T. Wetherald, 1975: ‘The effects of doubling the CO2 concentration on the climate of a general circulation model.’ J. Atmos. Sci., 32, 3–15.

    Article  Google Scholar 

  • Manabe, S., and R. T. Wetherald, 1980: ‘On the distribution of climate change resulting from an increase in CO2 content of the atmosphere.’ J. Atmos. Sci., 37, 99–118.

    Article  Google Scholar 

  • Manabe, S., J. Smagorinsky and R. F. Strickler, 1965: ‘Simulated climatology of a general circulation model with a hydrologic cycle.’ Mon. Wea. Rev., 93, 769–798.

    Article  Google Scholar 

  • Manabe, S., J. L. Holloway, Jr., H. M. Stone, 1970: ‘Simulated climatology of a general circulation model with a hydrologie cycle. III. Effects of increased horizontal computational resolution.’ Mon. Wea. Rev., 98, 175–212.

    Article  Google Scholar 

  • Manabe, S., K. Bryan and M. J. Spelman, 1975: ‘A global ocean-atmosphere climate model. Part 1. The atmospheric circulation.’ J. Phys. Ocean, 5, 3–29.

    Article  Google Scholar 

  • Manabe, S., K. Bryan and M. J. Spelman, 1979a: ‘A global ocean-atmosphere climate model with seasonal variation for future studies of climate sensitivity.’ Dyn. Atmos. Oceans., 3, 393–426.

    Article  Google Scholar 

  • Manabe, S., D. G. Hahn and J. L. Holloway, 1979b: ‘Climate simulation with GFDL spectral models of the atmosphere: Effect of spectral truncation.’ In GARP Publication Series No. 22, pp. 41–94.

    Google Scholar 

  • Manabe, S., R. T. Wetherald and R. J. Stouffer, 1981: ‘Summer dryness due to an increase of atmospheric CO2 concentration.’ Climatic Change, 3, 347–385.

    Google Scholar 

  • Marchuk, G. I., 1965: ‘A new approach to the numerical solution of differential equations of atmospheric processes.’ In WMO Tech. Note No. 66, Geneva, pp. 286–294.

    Google Scholar 

  • Marchuk, G. I., and Yu. N. Skiba, 1976: ‘Numerical calculation of the conjugate problem for a model of the thermal interaction of the atmosphere with the oceans and continents.’ Atmos. Ocean. Phys., 12, 279–284.

    Google Scholar 

  • Marchuk, G. I., V. P. Dynmikov, V. N. Lykosov, V. Ya. Galin, I. M. Bobyleva and V. L. Perov, 1979: ‘A global model of the general atmospheric circulation.’ Atmos. Ocean. Phys., 15, 321–331.

    Google Scholar 

  • Mason, B. J., 1976: ‘Towards the understanding and prediction of climatic variations.’ Quart. J. Roy. Met. Soc., 102, 473–498.

    Article  Google Scholar 

  • McAvaney, B., W. Bourke and K. Puri, 1978: ‘A global spectral model for simulation of the general circulation.’ J. Atmos. Sci., 35, 1557–1583.

    Article  Google Scholar 

  • Mechoso, C. R., M. J. Suarez, K. Yamazaki, J. A. Spahr and A. Arakawa, 1982: ‘A study of the sensitivity of numerical forecasts to an upper boundary in the lower stratosphere.’ Mon. Wea. Rev., 110, 1984–1993.

    Article  Google Scholar 

  • Mellor, G. L., and T. Yamada, 1974: ‘A hierarchy of turbulence closure models for planetary boundary layers.’ J. Atmos. Sci., 31, 1791–1806.

    Article  Google Scholar 

  • Mesinger, F., 1981a: ‘On the convergence and error problems of the calculation of the pressure gradient force in sigma coordinate models.’ Geophys. Astrophys. Fluid Dynam., 19, 105–117.

    Article  Google Scholar 

  • Mesinger, F., 1981b: ‘Horizontal advection schemes of a staggered grid – An enstrophy and energy-conserving model.’ Mon. Wea. Rev., 109, 467–478.

    Article  Google Scholar 

  • Mintz, Y., 1965: ‘Very long-term global integration of the primitive equations of atmospheric motion.’ In WMO Tech. Note No. 66, Geneva, pp. 141–155.

    Google Scholar 

  • Mitchell, J. F. B., 1983: ‘The seasonal response of a general circulation model to changes in CO2 and sea temperatures.’ Quart. J. Roy. Met. Soc., 109, 113–152.

    Google Scholar 

  • Miyakoda, K., and J.-P. Chao, 1982: ‘Essay on dynamical long-range forecasts of atmospheric circulation.’ J. Met. Soc. Japan, 60, 292–308.

    Google Scholar 

  • Miyakoda, K., and J. Sirutis, 1977: ‘Comparative Integrations of global models with various parameterized processes of subgrid-scale vertical transports: Description of the parameterizations.’ Beitr. Phys. Atmosph., 50, 445–487.

    Google Scholar 

  • Miyakoda, K., and R. J. Strickler, 1981: ‘Cumulative results of extended forecast experiment. Part III: Precipitation.’ Mon. Wea. Rev., 109, 830–842.

    Article  Google Scholar 

  • Miyakoda, K., G. D. Hembree, R. F. Strickler and I. Shulman, 1972: ‘Cumulative results of extended forecast experiments. I: Model performance for winter cases.’ Mon. Wea. Rev., 100, 836–855.

    Article  Google Scholar 

  • Miyakoda, K., G. D. Hembree and R. F. Strickler, 1979: ‘Cumulative results of extended forecast experiments. II: Model performance for summer cases.’ Mon. Wea. Rev., 107, 395–420.

    Article  Google Scholar 

  • Miyakoda, K., T. Gordon, R. Caverly, W. Stern, J. Sirutis and W. Bourke, 1983: ‘Simulation of a blocking event in January 1977.’ Mon. Wea. Rev., 111, 846–869.

    Article  Google Scholar 

  • Möller, F., 1951: ‘Vierteljahrskarten des Niederschlags für die Ganze Erde.’ In Petermanns Geogr. Mitt., 95, 1–7.

    Google Scholar 

  • Moncrieff, M. W., 1981: ‘A theory of organized steady convection and its transport properties.’ Quart. J. Roy. Met. Soc., 107, 29–50.

    Article  Google Scholar 

  • Moura, A. D., and J. Shukla, 1981: ‘On the dynamics of droughts in northeast Brazil: Observations, theory and numerical experiments with a general circulation model.’ J. Atmos. Sci., 38, 2653–2675.

    Article  Google Scholar 

  • Nakamura, H., 1976: ‘Some problems In reproducing planetary waves by numerical models of the atmosphere.’ J. Met. Soc. Japan, 54, 129–146.

    Google Scholar 

  • Nakamura, H., 1978: ‘Dynamical effects of mountains on the general circulation of the atmosphere: 1. Development of finite-difference schemes suitable for incorporating mountains.’ J. Met. Soc. Japan, 56, 317–339.

    Google Scholar 

  • Namias, J., 1969: ‘Seasonal interactions between the North Pacific Ocean and the atmosphere during the 1960s.’ Mon. Wea. Rev., 97, 173–192.

    Article  Google Scholar 

  • Namias, J., 1978: ‘Multiple causes of the North American abnormal winter of 1976–77.’ Mon. Wea. Rev., 106, 279–295.

    Article  Google Scholar 

  • Nap, J. L., H. M. van den Dool and J. Oerlemans, 1981: ‘A verification of monthly weather forecasts in the seventies.’ Mon. Wea. Rev., 109, 306–312.

    Article  Google Scholar 

  • Newell, R. E., J. W. Kidson, D. G. Vincent and G. J. Boer, 1974: The General Circulation of the Tropical Atmosphere, Vol. 2, MIT Press, Cambridge, Massachusetts, 371 pp.

    Google Scholar 

  • Nichols, N., 1980: ‘Long-range weather forecasting: Value, status and prospects.’ Rev. Geophys. Space Phys., 18, 771–788.

    Article  Google Scholar 

  • O’Neill, A., R. L. Newson and R. J. Murgatroyd, 1982: ‘An analysis of the large-scale features of the upper troposphere and the stratosphere in a global three-dimensional general circulation model.’ Quart. J. Roy. Met. Soc., 108, 25–53.

    Google Scholar 

  • Oort, A. H., and T. H. Vonder Haar, 1976: ‘On the observed annual cycle in the ocean-atmosphere heat balance over the northern hemisphere.’ J. Phys. Oceanog., 6, 781–800.

    Article  Google Scholar 

  • Opsteegh, J. D., and H. M. van den Dool, 1980: ‘Seasonal differences in the stationary response of a linearized model: Prospects for long-range weather forecasting?’ J. Atmos. Sci., 37, 2169–2185.

    Article  Google Scholar 

  • Orszag, S. A., 1970: ‘Transform method for calculation of vector coupled sums: Application to the spectral form of the vorticity equation.’ J. Atmos. Sci., 27, 890–895.

    Article  Google Scholar 

  • Paltridge, G. W., and C. M. R. Piatt, 1976: Radiative Processes in Meteorology and Climatology, Elsevier, 318 pp.

    Google Scholar 

  • Pfeffer, R. L. (ed.), 1960: Dynamics of Climate, Pergamon Press, 137 pp.

    Google Scholar 

  • Phillips, N. A., 1956: ‘The general circulation of the atmosphere: A numerical experiment.’ Quart. J. Roy. Met. Soc., 82, 123–164.

    Article  Google Scholar 

  • Phillips, N. A., 1957: ‘A coordinate system having some special advantages for numerical forecasting.’ J. Met., 14, 184–185.

    Article  Google Scholar 

  • Phillips, N. A., 1973: ‘Principles of large scale numerical weather prediction.’ In Dynamical Meteorology, ed. P. Morel, Reidel, 1–95.

    Google Scholar 

  • Pitcher, E. J., R. C. Malone, V. Ramanathan, M. L. Blackmon, K. Purl and W. Bourke, 1983: ‘January and July simulations with a spectral general circulation model.’ J. Atmos. Sci., 40, 580–604.

    Article  Google Scholar 

  • Pollard, D., 1982: The performance of an upper-ocean model coupled to an atmospheric GCM: Preliminary results.’ Climatic Research Institute, Report No. 31, Oregon State University, Corvallis, OR, 33pp.

    Google Scholar 

  • Pratt, R. W., 1979: ‘A space-time spectral comparison of the NCAR and GFDL general circulation models of the atmosphere.’ J. Atmos. Sci., 36, 1681–1691.

    Article  Google Scholar 

  • Ramanathan, V., E. J. Pitcher, R. C. Malone and M. L. Blackmon, 1983: ‘The response of a spectral general circulation model to refinements in radiative processes.’ J. Atmos. Sci., 40, 605–630.

    Article  Google Scholar 

  • Randall, D. A., 1976: ‘The interaction of the planetary boundary layer with large-scale circulations.’ Ph.D. thesis, University of California, Los Angeles, 247 pp.

    Google Scholar 

  • Ratcliffe, R. A. S., and R. Murray, 1970: ‘New lag associations between North Atlantic sea temperature and European pressure applied to long-range weather forecasting.’ Quart. J. Roy. Met. Soc., 96, 226–246.

    Article  Google Scholar 

  • Robert, A. J., 1981: ‘A stable numerical integration scheme for the primitive meteorological equations.’ Atmos. Ocean, 19, 35–46.

    Article  Google Scholar 

  • Robert, A. J., 1982: ‘A semi-Lagrangian and semi-implicit, numerical integration scheme for baroclinic models of the atmosphere.’ Met. Soc. Japan, 60, 319–325.

    Google Scholar 

  • Robert, A. J., J. Henderson and C. Turnbull, 1972: ‘An implicit time integration scheme for baroclinic models of the atmosphere.’ Mon. Wea. Rev., 100, 329–335.

    Article  Google Scholar 

  • Rowntree, P. R., 1972: ‘The influence of tropical east Pacific Ocean temperatures on the atmosphere.’ Quart. J. Roy. Met. Soc., 98, 290–321.

    Article  Google Scholar 

  • Rowntree, P. R., 1976: ‘Response of the atmosphere to a tropical Atlantic Ocean temperature anomaly.’ Quart. J. Roy. Met. Soc., 102, 607–626.

    Article  Google Scholar 

  • Rowntree, P. R., 1978: ‘Numerical prediction and simulation of the tropical atmosphere.’ In Meteorology over the Tropical Oceans. Roy. Met. Soc., 278 pp.

    Google Scholar 

  • Rowntree, P. R., 1979: ‘Statistical assessments of sea temperature anomaly experiments.’ In GARP Publication Series No. 22, pp. 482–500.

    Google Scholar 

  • Sadourny, R., 1975: ‘The dynamics of finite difference models of the shallow-water equations.’ J. Atmos. Sci., 32, 680–689.

    Article  Google Scholar 

  • Schlesinger, M. E., and Y. Mintz, 1979: ‘Numerical simulation of ozone production, transport and distribution with a global atmospheric general circulation model.’ J. Atmos. Sci., 36, 1325–1361.

    Article  Google Scholar 

  • Schlesinger, M. E., and W. L. Gates, 1980: ‘The January and July performance of the OSU two-level atmospheric general circulation model.’ J. Atmos. Sci., 37, 1914–1943.

    Article  Google Scholar 

  • Schlesinger, M. E., and W. L. Gates, 1981: ‘Preliminary analysis of the mean annual cycle and inter-annual variability simulated by the OSU two-level atmospheric general circulation model.’ Climatic Research Institute, Report No. 23, Oregon State University, Corvallis, OR, 47 pp.

    Google Scholar 

  • Schlesinger, M. E., W. L. Gates and Y.-J. Han, 1985: ‘The role of the ocean in CO2-induced climate warming: Preliminary results from the OSU coupled atmosphere-ocean GCM.’ In Coupled Ocean-Atmosphere Models, ed. J. C. J. Nihoul, Elsevier, pp. 447–478.

    Chapter  Google Scholar 

  • Schneider, S. H., and R. E. Dickinson, 1974: ‘Climate modelling.’ Rev. Geophys. Space Phys., 12, 447–493.

    Article  Google Scholar 

  • Schneider, S. H., W. M. Washington and R. M. Chervin, 1978: ‘Cloudiness as a climatic feedback mechanism: Effects on cloud amounts of prescribed global and regional surface temperature changes in the NCAR GCM.’ J. Atmos. Sci., 35, 2207–2221.

    Article  Google Scholar 

  • Shaw, D. B., 1981: ‘ECMWF operational forecasts in the SW and NE monsoon regions.’ In Proceedings of ECMWF Workshop on Tropical Meteorology and its Effects on Medium-Range Prediction in Middle Latitudes, pp. 53–86.

    Google Scholar 

  • Shukla, J., 1975: ‘Effect of Arabian sea surface temperature anomaly on Indian summer monsoon: A numerical experiment with the GFDL model.’ J. Atmos. Sci., 32, 503–511.

    Article  Google Scholar 

  • Shukla, J., 1981a: ‘Dynamical predictability of monthly means.’ J. Atmos. Sci., 38, 2547–2572.

    Article  Google Scholar 

  • Shukla, J., 1981b: ‘Predictability of monthly means: Part II. Influence of the boundary forcings.’ In Proceedings of ECMWF Seminar on Problems and Prospects in Long and Medium Range Weather Forecasting, pp. 261–312.

    Google Scholar 

  • Shukla, J., and B. Bangaru, 1979: ‘Effect of a Pacific sea-surface temperature anomaly on the circulation over North America: A numerical experiment with the GLAS model.’ In GARP Publication Series No. 22, pp. 501–518.

    Google Scholar 

  • Shukla, J., and J. M. Wallace, 1983: ‘Numerical simulation of the atmospheric response to equatorial Pacific sea surface temperature anomalies.’ J. Atmos. Sci., 40, 1613–1630.

    Article  Google Scholar 

  • Silberman, I., 1954 ‘Planetary waves In the atmosphere.’ J. Met., 11, 27–34.

    Article  Google Scholar 

  • Simmons, A. J., 1982a: ‘The forcing of stationary wave motion by tropical diabatic heating.’ Quart. J. Roy. Met. Soc., 108, 503–534.

    Article  Google Scholar 

  • Simmons, A. J., 1982b: ‘The numerical prediction and simulation of the tropical atmosphere – a sample of results from operational forecasting and extended Integrations at ECMWF.’ In Tropical Droughts – Meteorological Aspects and Implications for Agriculture. WMO, Geneva, pp. 81–103.

    Google Scholar 

  • Simmons, A. J., and D. M. Burridge, 1981: ‘An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates.’ Mon. Wea. Rev., 109, 758–766.

    Article  Google Scholar 

  • Simmons, A. J., and R. Strüfing, 1983: ‘Numerical forecasts of stratospheric warming events using a model with a hybrid vertical coordinate.’ Quart. J. Roy. Met. Soc., 109, 81–111.

    Article  Google Scholar 

  • Simmons, A. J., B. J. Hoskins and D. M. Burridge, 1978: ‘Stability of the semi-implicit time scheme.’ Mon. Wea. Rev., 106, 405–412.

    Article  Google Scholar 

  • Simmons, A. J., J. M. Wallace and G. W. Branstator, 1983: ‘Barotropic wave propagation and instability, and atmospheric teleconnection patterns.’ J. Atmos. Sci., 40, 1363–1392.

    Article  Google Scholar 

  • Simpson, R. W., and W. K. Downey, 1975: ‘The effect of a warm mid-latitude sea-surface temperature anomaly on a numerical simulation of the general circulation of the Southern Hemisphere.’ Quart. J. Roy. Met. Soc., 101, 847–867.

    Article  Google Scholar 

  • Slingo, J. M., 1980: ‘A cloud parameterization scheme derived from GATE data for use with a numerical model.’ Quart. J. Roy. Met. Soc., 106, 747–770.

    Article  Google Scholar 

  • Smagorinsky, J., 1953: ‘The dynamical influences of large scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere.’ Quart. J. Roy. Met. Soc., 79, 342–366.

    Article  Google Scholar 

  • Smagorinsky, J., 1963: ‘General circulation experiments with the primitive equations. I. The basic experiment.’ Mon. Wea. Rev., 93, 99–164.

    Article  Google Scholar 

  • Smagorinsky, J., 1969: ‘Problems and promises of deterministic extended range forecasting.’ Bull. Amer. Met. Soc., 50, 286–311.

    Google Scholar 

  • Smagorinsky, J., S. Manabe and J. L. Holloway, Jr., 1965: ‘Numerical results from a 9-level general circulation model of the atmosphere.’ Mon. Wea. Rev., 93, 727–768.

    Article  Google Scholar 

  • Somerville, R. C. J., P. H. Stone, M. Halem, J. E. Hansen, J. S. Hogan, L. M. Druyan, G. Russell, A. A. Lacis, W. J. Quirk and J. Tenenbaum, 1974: ‘The GISS model of the global atmosphere.’ J. Atmos. Sci., 31, 84–117.

    Article  Google Scholar 

  • Spar, J., 1973: ‘Some effects of surface anomalies in a global general circulation model.’ Mon. Wea. Rev., 101, 91–100.

    Article  Google Scholar 

  • Staniforth, A. N., and R. W. Daley, 1977: ‘A finite-element formulation for the vertical discretization of sigma-coordinate primitive-equation models. ‘Mon. Wea. Rev., 105, 1108–1118.

    Article  Google Scholar 

  • Staniforth, A. N., and H. L. Mitchell, 1978: ‘A variable-resolution finite-element technique for regional forecasting with the primitive equations.’ Mon. Wea. Rev., 106, 439–447.

    Article  Google Scholar 

  • Straus, D. M., and J. Shukla, 1981: ‘Space-time spectral structure of a GLAS general circulation model and a comparison with observations.’ J. Atmos. Sci., 38, 902–917.

    Article  Google Scholar 

  • Strüfing, R., 1982a: ‘On the effect of energy/enstrophy conservation in the finite difference scheme of the ECMWF gridpoint model.’ ECMWF Tech. Memo, No. 49, 34 pp.

    Google Scholar 

  • Strüfing, R., 1982b: ‘Some comparisons between linear and non-linear horizontal diffusion schemes for the ECMWF grid-point model.’ ECMWF Tech. Memo. No. 60, 42 pp.

    Google Scholar 

  • Sud, Y. C., and M. Fennessy, 1982: ‘A study of the influence of surface albedo on July circulation in semi-arid regions using the GLAS GCM.’ J. Climatology, 2, 105–125.

    Article  Google Scholar 

  • Sundqvist, H., 1976: ‘On vertical interpolation and truncation in connection with use of sigma system models.’ Atmosphere, 14, 37–52.

    Google Scholar 

  • Sundqvist, H., 1981: ‘Prediction of stratiform clouds: Results from a 5-day forecast with a global model.’ Tellus, 33, 242–253.

    Article  Google Scholar 

  • Tiedtke, M., J.-F. Geleyn, A. Hollingsworth and J.-F. Louis, 1979: ‘ECMWF model-parameterization of sub-grid scale processes.’ ECMWF Tech. Rep. No. 10, 46 pp.

    Google Scholar 

  • Trenberth, K., 1979: Interannual variability of the 500 mb zonal flow in the southern hemisphere.’ Mon. Wea. Rev., 107, 1515–1524.

    Article  Google Scholar 

  • U.S. National Academy of Sciences, 1975: Understanding Climatic Change, Washington, DC, 239 pp.

    Google Scholar 

  • Volmer, J.-P., M. Deque and M. Jarraud, 1983a: ‘Large scale fluctuations in a long range integration of the ECMWF spectral model.’ Tellus, 35, 173–188.

    Google Scholar 

  • Volmer, J.-P., M. Deque and D. Rousselet, 1983b: ‘EOF analysis of 500 mb geopotential: A comparison between simulation and reality.’ Tellus, 36A, 336–347.

    Google Scholar 

  • Vonder Haar, T. H., and A. H. Oort, 1973: ‘New estimate of annual poleward energy transport by Northern Hemisphere oceans.’ J. Phys. Oceanog., 3, 169–172.

    Article  Google Scholar 

  • Vonder Haar, T. H., and V. E. Suomi, 1971: ‘Measurements of the Earth’s radiation budget from satellites during a five-year period. Part 1. Extended time and space means.’ J. Atmos. Sci., 28, 305–314.

    Article  Google Scholar 

  • Walker, J. M., and P. R. Rowntree, 1977: ‘The effect of soil moisture on circulation and rainfall in a tropical model.’ Quart. J. Roy. Met. Soc., 103, 29–46.

    Article  Google Scholar 

  • Wallace, J. M., and D. S. Gutzler, 1981: ‘Teleconnections in the geopotential height field during the northern hemisphere winter.’ Mon. Wea. Rev., 109, 784–812.

    Article  Google Scholar 

  • Wallace, J. M., S. Tibaldi and A. J. Simmons, 1983: ‘Reduction of systematic forecast errors in the ECMWF model through the introduction of an envelope orography.’ Quart. J. Roy. Met Soc., 109, 683–717.

    Article  Google Scholar 

  • Washington, W. M., 1981: ‘A review of general-circulation model experiments on the Indian monsoon.’ In Monsoon Dynamics, eds. M. J. Lighthill and R. P. Pearce, Cambridge University Press, pp. 111–130.

    Google Scholar 

  • Washington, W. M., and S. M. Daggupaty, 1975: ‘Numerical simulation with the NCAR global circulation model of the mean conditions during the Asian-African summer monsoon.’ Mon. Wea. Rev., 103, 105–114.

    Article  Google Scholar 

  • Washington, W. M., and D. L. Williamson, 1977: ‘A description of the NCAR global circulation models.’ In Methods in Comp. Physics, Vol. 17, General Circulation Models of the Atmosphere, ed. J. Chang, Academic Press, pp. 111–172.

    Google Scholar 

  • Washington, W. M., R. M. Chervin and G. V. Rao, 1977: ‘Effects of a variety of Indian Ocean surface temperature anomaly patterns on the summer monsoon circulation: Experiments with the NCAR general circulation model.’ Pure and Applied Geophysics, 115, 1335–1356.

    Article  Google Scholar 

  • Washington, W. M., R. E. Dickinson, V. Ramanathan, T. Mayer, D. L. Williamson, G. Williamson and R. Wolski, 1979: ‘Preliminary atmospheric simulation with the third-generation NCAR general circulation model.’ GARP Publication Series No. 22, pp. 95–138.

    Google Scholar 

  • Washington, W. M., A. J. Semtner, G. A. Meehl, D. J. Knight and T. A. Mayer, 1980: ‘A general circulation experiment with a coupled atmosphere, ocean and sea ice model.’ J. Phys. Oceanog., 10, 1887–1808.

    Article  Google Scholar 

  • Webster, P. J., 1981: ‘Mechanisms determining the atmospheric response to sea surface temperature anomalies.’ J. Atmos. Sci., 38, 554–571.

    Article  Google Scholar 

  • Wellck, R. E., A. Kasahara, W. M. Washington and G. de Santo, 1971: ‘Effect of horizontal resolution in a finite-difference model of the general circulation.’ Mon. Wea. Rev., 99, 673–693.

    Article  Google Scholar 

  • Wells, N. C., 1979a: ‘A coupled ocean-atmosphere experiment: The ocean response.’ Quart. J. Roy. Met. Soc., 105, 355–370.

    Article  Google Scholar 

  • Wells, N. C., 1979b: ‘The effect of a tropical sea-surface temperature anomaly in a coupled ocean-atmosphere model.’ J. Geophys. Res., 84, 4985–4997.

    Article  Google Scholar 

  • Wetherald, R. T., and S. Manabe, 1980: ‘Cloud cover and climate sensitivity.’ J. Atmos. Sci., 37, 1485–1510.

    Article  Google Scholar 

  • Williams, J., R. G. Barry and W. M. Washington, 1974: ‘Simulation of the atmospheric circulation using the NCAR global circulation model with ice age boundary conditions.’ J. Appl. Met., 13, 305–317.

    Article  Google Scholar 

  • Williamson, D. L., 1978: ‘The relative importance of resolution, accuracy and diffusion in short-range forecasts with the NCAR global circulation model.’ Mon. Wea. Rev., 106, 69–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Simmons, A.J., Bengtsson, L. (1988). Atmospheric General Circulation Models: Their Design and Use for Climate Studies. In: Schlesinger, M.E. (eds) Physically-Based Modelling and Simulation of Climate and Climatic Change. NATO ASI Series, vol 243. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3041-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3041-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7867-2

  • Online ISBN: 978-94-009-3041-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics