Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 243))

Abstract

The simulation of the general circulation of the ocean requires a physically-based, comprehensive model of the ocean. The formulation and testing of such an ocean general circulation model is described in this chapter, and is illustrated with a baroclinic six-layer global ocean model. This model has been tested by simulating the seasonal cycle of the oceanic general circulation subject to prescribed atmospheric boundary conditions comprised of the climatological surface wind stress and atmosphere-ocean heat flux. In comparison with observations the model has realistically simulated the large-scale features of the annual mean and seasonal variation of temperature and currents, although the relatively narrow equatorial and western boundary currents are underestimated due to the model’s coarse resolution. The meridional heat transport in the Northern Hemisphere simulated by the model is somewhat less than that observed, while the model’s southern hemisphere transports agree reasonably well with observational estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa, A., 1966: ‘Computational design for long-term numerical integration of the equations of fluid motion. Two dimensional incompressible flow. Part I.’ J. Comput. Phys., 1, 119–143.

    Article  Google Scholar 

  • Bathen, K. H., 1972: ‘On the seasonal changes in the depth of the mixed layer in the North Pacific Ocean. J. Geophys. Res., 77 7138–7150.

    Article  Google Scholar 

  • Batteen, M. L., and Y.-J. Han, 1981: ‘On the computational noise of finite-difference schemes used in the ocean models.’ Tellus, 33, 387–396.

    Article  Google Scholar 

  • Bennett, A. F., 1978: ‘Poleward heat fluxes in Southern Hemisphere oceans.’ J. Phys. Oceanogr., 8 785–798.

    Article  Google Scholar 

  • Bjerknes, J., 1969: ‘Atmospheric teleconnections from the equatorial Pacific.’ Mon. Wea. Rev., 97 162–172.

    Article  Google Scholar 

  • Bryan, K., 1969: ‘A numerical method for the study of the circulation of the world ocean.’ J. Comput. Phys., 4, 347–376.

    Article  Google Scholar 

  • Bryan, K., and L. J. Lewis, 1979: ‘A water mass model of the world ocean.’ J. Geophys. Res., 84 2503–2517.

    Article  Google Scholar 

  • Bryan, K., S. Manabe and R. C. Pacanowski, 1975: ‘A global ocean-atmosphere climate model: Part II. The oceanic circulation.’ J. Phys. Oceanogr., 5, 30–46.

    Article  Google Scholar 

  • Bryden, H. L., and M. M. Hall, 1980: ‘Heat transport by currents across 25°N latitude in the Atlantic Ocean.’ Science, 207 884–885.

    Article  Google Scholar 

  • Budyko, M. I., 1963: Atlas of the Heat Balance of the Earth. Globnaia Geofiz. Observ., Moscow, 69 pp.

    Google Scholar 

  • Bunker, A. F., 1976: ‘Computations of surface energy flux and annual air-sea interaction cycles of the North Atlantic Ocean.’ Mon. Wea. Rev.,104 1122–1140.

    Article  Google Scholar 

  • Eckart, C., 1958: ‘Properties of water, part II.’ Am. J. Sci., 256 225–240.

    Article  Google Scholar 

  • Esbensen, S. K., and Y. Kushnir, 1981: ‘Heat budget of the global ocean: Estimates from surface marine observations.’ Report No. 29, Climatic Research Institute, Oregon State University, Corvallis, OR, 27 pp.

    Google Scholar 

  • Gates, W. L., and A. B. Nelson, 1975: ‘A new (revised) tabulation of the Scripps topography on a 1° global grid. Part II: Ocean depth.’ R-1227–1-ARPA, The Rand Corporation, Santa Monica, CA, 132 pp.

    Google Scholar 

  • Gill, A. E., and K. Bryan, 1971: ‘Effects of geometry on the circulation of a three-dimensional southern hemisphere ocean model.’ Deep-Sea Res., 18 51–64.

    Google Scholar 

  • Godfrey, J. S., and T. J. Golding, 1981: ‘The Sverdrup relation in the Indian Ocean, and the effect of Pacific-Indian Ocean through-flow on Indian Ocean circulation and on the East Australian current.’ J. Phys. Oceanogr., 11 771–779.

    Article  Google Scholar 

  • Gordon, A. L., and H. Taylor, 1975: ‘Heat and salt balance within the cold waters of the world ocean.’ In Proceedings of the Symposium on Numerical Models of Ocean Circulation (Durham, New Hampshire, 17–20 October 1972), National Academy of Sciences, Washington, DC, 54–56

    Google Scholar 

  • Han, Y.-J., 1984a: ‘A numerical world ocean general circulation model, Part I. Basic design and barotropic experiment.’ Dyn. Atmos. Oceans, 8, 107–140.

    Article  Google Scholar 

  • Han, Y.-J., 1984b: ‘A numerical world ocean general circulation model, part II. A baroclinic experiment.’ Dyn. Atmos. Oceans, 8, 141–172.

    Article  Google Scholar 

  • Han, Y.-J., and S.-W. Lee, 1983: ‘An analysis of monthly mean wind stress over the global ocean.’ Mon. Wea. Rev., 111 1554–1566.

    Google Scholar 

  • Han, Y.-J., M. E. Schlesinger and W. L. Gates, 1985: ‘An analysis of the air-sea-ice interaction simulated by the OSU-coupled atmosphere-ocean general circulation model.’ In Coupled Ocean-Atmosphere Models, ed. J. C. J. Nihoul, Elsevier, Amsterdam, 167–182.

    Chapter  Google Scholar 

  • Haney, R. L., 1971: ‘Surface thermal boundary condition for ocean circulation models.’ J. Phys. Oceanogr., 1, 241–248.

    Article  Google Scholar 

  • Haney, R. L., 1974: ‘A numerical study of the response of an idealized ocean to large-scale surface heat and momentum flux.’ J. Phys. Oceanogr., 4 145–167.

    Article  Google Scholar 

  • Holland, W. R., and A. D. Hirshman, 1972: ‘A numerical calculation of the circulation in the North Atlantic Ocean.’ J. Phys. Oceanogr., 2 336–354.

    Article  Google Scholar 

  • Kim, J.-W., 1979: ‘Design and preliminary performance of the OSU four-level oceanic general circulation model.’ Report No. 6, Climatic Research Institute, Oregon State University, Corvallis, 49 pp.

    Google Scholar 

  • Kim, J.-W., and W. L. Gates, 1980: ‘Simulation of the seasonal fluctuation of the upper ocean by a global circulation model with an imbedded mixed layer.’ Report No. 11, Climatic Research Institute, Oregon State University, Corvallis, OR, 60 pp.

    Google Scholar 

  • Leetmaa, A., J. P. McCreary, Jr. and D. W. Moore, 1980: ‘Equatorial currents: Observations and Theory.’ In Evolution of Physical Oceanography, eds. B. A. Warren and C. Wunsch, The MIT Press,’ Cambridge, MA, 184–196.

    Google Scholar 

  • Meehl, G. A., W. M. Washington and A. J. Semtner, 1982: ‘Experiments with a global ocean model driven by observed atmospheric forcing.’ J. Phys. Oceanogr., 12 301–312.

    Article  Google Scholar 

  • Munk, W. H., 1966: ‘Abyssal recipes.’ Deep-Sea Res., 13 707–730.

    Google Scholar 

  • Niiler, P. P., and W. S. Richardson, 1973: ‘Seasonal variability of the Florida current.’ J. Mar. Res., 31 144–167.

    Google Scholar 

  • Nowlin, Jr., W. D., T. Whitworth III and R. D. Pillsbury, 1977: ‘Structure and transport of the Antarctic circumpolar current at Drake Passage from short-term measurements.’ J. Phys. Oceanogr., 7, 788–802.

    Article  Google Scholar 

  • Oort, A. H., and T. H. Vonder Haar, 1976: ‘On the observed annual cycle in the ocean-atmosphere heat balance over the Northern Hemisphere.’ J. Phys. Oceanogr., 6, 781–800.

    Article  Google Scholar 

  • Parkinson, C. L., and W. M. Washington, 1979: ‘A large-scale numerical model of sea ice.’ J. Geophys. Res., 84 311–337.

    Article  Google Scholar 

  • Philander, S. G. H., 1973: ‘Equatorial undercurrent: Measurements and theories.’ Rev. Geophys. Space Phys., 11 513–570.

    Article  Google Scholar 

  • Phillips, N. A., 1966: ‘The equations of motion for a shallow rotating atmosphere and the “traditional approximation”.’ J. Atmos. Sci., 23 626–628.

    Article  Google Scholar 

  • Richardson, P. L., and J. A. Knauss, 1971: ‘Gulf Stream and western boundary undercurrent observations at Cape Hatteras.’ Deep-Sea Res., 18 1089–1110.

    Google Scholar 

  • Robinson, A. R., and H. Stommel, 1959: ‘The oceanic thermocline and the associated thermohaline circulation.’ Tellus, 11 295–308.

    Google Scholar 

  • Semtner, A. J., 1973: ‘A numerical investigation of Arctic Ocean circulation.’ Ph.D. dissertation, Princeton University, 251 pp.

    Google Scholar 

  • Semtner, A. J., 1974: ‘An oceanic general circulation model with bottom topography.’ Tech. Rep. No. 9, Dept. Meteor., University of California, Los Angeles, 99 pp.

    Google Scholar 

  • Soviet World Ocean Atlas, 1974: Pacific Ocean (Vol. 1), Atlantic and Indian Oceans (Vol. 2). Ed. S. G. Gorshkov, USSR Ministry of Defense, Moscow.

    Google Scholar 

  • Stommel, H., and A. B. Arons, 1960: ‘On the abyssal circulation of the world ocean. I. Stationary planetary flow patterns on a sphere.’ Deep-Sea Res., 6 140–154.

    Google Scholar 

  • Stommel, H., and J. Webster, 1962: ‘Some properties of the thermocline equations in a sub-tropical gyre.’ J. Mar. Res., 20 42–56.

    Google Scholar 

  • Sverdrup, H. U., M. W. Johnson and R. H. Fleming, 1942: The Oceans, Their Physics, Chemistry and General Biology. Prentice Hall, New York, 1087 pp.

    Google Scholar 

  • Takano, K., 1974: ‘A general circulation model for the world ocean.’ Tech. Rep. No. 8, Dept. Meteor., University of California, Los Angeles, 46 pp.

    Google Scholar 

  • Takano, K., Y. Mlntz and Y.-J. Han, 1973: ‘Numerical simulation of the world ocean circulation.’ Paper presented at the 2nd Conference on Numerical Prediction, Am. Meteor. Soc., Monterey, CA, 10 pp (available from the Department of Atmospheric Sciences, Oregon State University, Corvallis, OR 97331).

    Google Scholar 

  • Trenberth, K. E., 1979: ‘Mean annual poleward energy transports by the oceans in the Southern Hemisphere.’ Dyn. Atmos. Oceans, 4 57–64.

    Article  Google Scholar 

  • U.S. Navy, 1981: Marine Climatic Atlas of the World. NAVAIR 50-IC-65, Vol. IX, U.S. Government Printing Office. Washington, DC, 169 pp.

    Google Scholar 

  • Washington, W. M., A. J. Semtner, Jr., G. A. Meehl, D. J. Knight and T. A. Mayer, 1980: ‘A general circulation experiment with a coupled atmosphere, ocean and sea ice model.’ J. Phys. Oceanogr., 10 1887–1908.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Han, YJ. (1988). Modelling and Simulation of the General Circulation of the Ocean. In: Schlesinger, M.E. (eds) Physically-Based Modelling and Simulation of Climate and Climatic Change. NATO ASI Series, vol 243. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3041-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3041-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7867-2

  • Online ISBN: 978-94-009-3041-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics