Mass Loss and Non-Radial Pulsations in Be Stars

  • A. G. Hearn
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 148)


The interpretation of infra-red observations of Be stars made with IRAS is discussed. This shows that a slow stellar wind is leaving the star forming an equatorial disc. The mass loss rate is 50 to 100 times greater than that deduced from the ultraviolet observations, which show a fast rapidly accelerating wind coming presumably from the star outside the equatorial region. The large mass loss and slow velocities imply a mechanism for the stellar wind in the equatorial regions which is different from the radiatively driven wind.

The observations of non-radial pulsations in Be stars which have their maximum amplitude confined to the equatorial regions suggest a possible origin of the mass loss forming the disc. A theory of mass loss driven by sound waves is given. It is assumed that the sound wave are generated by the non-radial pulsations. This mechanism does give a slow stellar wind, but further work is necessary to find out whether the theory can explain the Be star observations.


Mass Loss Neutron Star Sound Wave Mass Loss Rate Stellar Wind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baade, D., 1984: Astron. Astrophys. 135, 101ADSGoogle Scholar
  2. Castor, J.I., Abbott, D.C., Klein, R.I., 1975: Astrophys. J. 195, 157ADSCrossRefGoogle Scholar
  3. Garmany, C.D., Olson, G.L., Conti, P.S., van Steenberg, M.E., 1981: Astrophys. J. 250, 660ADSCrossRefGoogle Scholar
  4. Gehrz, R.D., Hackwell, J.A., Jones, T.W., 1974: Astrophys. J. 191, 675ADSCrossRefGoogle Scholar
  5. Hartmann, L., Maregor, K.B., 1980: Astrophys. J. 242, 260ADSCrossRefGoogle Scholar
  6. Holzer, T.E., Fla, T., Leer, E., 1983: Astrophys. J. 275, 808ADSCrossRefGoogle Scholar
  7. Kurucz, R.L., 1979: Astrophys. J. Suppl. 40, 1ADSCrossRefGoogle Scholar
  8. Lamers, H.J.G.L.M., Waters, L.B.F.M., 1984: Astrophys. J. 136, 37ADSGoogle Scholar
  9. Pijpers, F.P., Hearn, A.G., 1988: Astron. Astrophys. SubmittedGoogle Scholar
  10. Poe, C.H., Friend, D.B., 1986: Astrophys. J. 311, 317ADSCrossRefGoogle Scholar
  11. Poeckert, R., Marlborough, J.M., 1979: Astrophys. J. 233, 259ADSCrossRefGoogle Scholar
  12. Snow, T.P., 1981: Astrophys. J. 251, 139ADSCrossRefGoogle Scholar
  13. Struve, O., 1931: Astrophys. J. 73, 94ADSCrossRefGoogle Scholar
  14. Taylor, A.R., Waters, L.B.F.M., Lamers, H.J.G.L.M., Persi, P.,Bjorkman, K.S., 1987: Mon. Not. R. Astr. Soc. 228, 811ADSGoogle Scholar
  15. Vogt, S.S., Penrod, G.D., 1983: Astrophys. J. 275, 661ADSCrossRefGoogle Scholar
  16. Waters, L.B.F.M., 1986: Astron. Astrophys. 162, 121ADSGoogle Scholar
  17. Waters, L.B.F.M., Coté, J., Lamers, H.J.G.L.M., 1988a: Astron. Astrophys. in printGoogle Scholar
  18. Waters, L.B.F.M., Taylor, A.R., van den Heuvel, E.P.J., Habets, G.M.H.J., Persi, P., 1988b: Astron. Astrophys. in printGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • A. G. Hearn
    • 1
  1. 1.Sterrekundig InstituutUtrechtThe Netherlands

Personalised recommendations