Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 235))

  • 259 Accesses

Abstract

Irreversible coagulation (or aggregation) processes are described first by equations, for which a scaling theory is described. It is then argued that the range of validity of this description does not necessarily include the case where diffusion is the rate-limiting step. A simplified model to simulate this latter case is then described and shown to deviate from the predictions of the rate equations if the space dimension d (or the spectral dimension d s for fractal substrates) is less than or equal to two. Finally, some open problems in the treatment of more realistic models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a recent presentation of the subject, see e.g. On Growth and Form ,H. E. Stanley and N. Ostrowski eds., M. Nijhoff, Dordrecht (1986)

    Google Scholar 

  2. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation ,Reidel, Dordrecht (1978)

    Google Scholar 

  3. S. K. Friedlander, Smoke, Dust and Haze ,Wiley, New-York (1977)

    Google Scholar 

  4. P. J. Flory, Principles of Polymer Chemistry ,Cornell University, Ithaca, New-York (1953)

    Google Scholar 

  5. W. H. Stockmayer, J. Chem. Phys. 11, 45 (1043)

    Article  Google Scholar 

  6. G. B. Field and W. C. Saslow, Astrophys. J. 142, 568 (1065)

    Article  Google Scholar 

  7. J. Silk and S. D. White, Astrophys. J. 223, L59 (1978)

    Article  Google Scholar 

  8. F. W. Wiegel and A. S. Perelson, J. Stat. Phys. 29, 813 (1982)

    Article  Google Scholar 

  9. P. Meakin, Phys. Rev. Lett. 51, 1119 (1983)

    Article  Google Scholar 

  10. M. Kolb, R. Botet and R. Jul lien, Phys. Rev. Lett. 51. 1123 (1983)

    Article  Google Scholar 

  11. R. Jullien and M. Kolb, J. Phys. A: Math. Gen. 17, L639 (1984)

    Article  CAS  Google Scholar 

  12. D. Weitz and M.Oliveira, Phys. Rev. Lett. 52, 1433 (1084)

    Article  Google Scholar 

  13. D. W. Schaefer, J. Martin, P. Wiltzius and D. S. Cannell, Phys. Rev. Lett. 52, 2371 (1984)

    Article  CAS  Google Scholar 

  14. D. Weitz, J. S. Huang, M. Y. Lin and J. Sung, Phys. Rev. Lett. 54, 1416 (1085)

    Article  Google Scholar 

  15. K. Kang and S. Redner, Phys. Rev. A30, 2833 (1984)

    Google Scholar 

  16. K. Kang and S. Redner, Phys. Rev. A32, 435 (1985)

    Google Scholar 

  17. P. G. J. van Dongen and M. H. Ernst, Phys. Rev. Lett. 54, 1306 (1085)

    Google Scholar 

  18. S. K. Friedlander, J. Meteor. 17, 373 (1060)

    Article  Google Scholar 

  19. S. K. Friedlander, J. Meteor. 17, 470 (1060)

    Google Scholar 

  20. T. Vicsek and F. Family, Phys. Rev. Lett. 52, 1660 (1084)

    Google Scholar 

  21. F. Leyvraz and H. R. Tschudi, J. Phys. A: Math. Gen. 14, 3380 (1081)

    Google Scholar 

  22. F. Leyvraz and H. R. Tschudi, J. Phys. A: Math. Gen. 15, 1951 (1082)

    Article  Google Scholar 

  23. F. Leyvraz, J. Phys. A: Math. Gen. 16, 2661 (1983)

    Article  Google Scholar 

  24. E. H. Hendriks, M. H. Ernst and R. M. Ziff, J. Stat. Phys. 31, 519 (1983)

    Article  Google Scholar 

  25. P. G. J. van Dongen, J. Stat. Phys. 44, 785 (1086)

    Article  Google Scholar 

  26. M. v. Smoluchowski, Phys. Z. 17, 593 (1016)

    Google Scholar 

  27. R. Jullien, M. Kolb and R. Botet in Kinetics of Aggregation and Gelation ,F. Family and D. P. Landau eds., Elsevier, North Holland, Amsterdam (1084)

    Google Scholar 

  28. W. D. Brown and R. C. Ball, J. Phys. A: Math. Gen. 18, L517 (1985)

    Article  CAS  Google Scholar 

  29. R. C. Ball, D. Weitz, T. Witten and F. Leyvraz, Phys. Rev. Lett. 58, 274 (1087)

    Article  Google Scholar 

  30. L. Peliti, J. Phys. A: Math. Gen. 19, 973 (1986)

    Article  Google Scholar 

  31. K. Kang, S. Redner, P. Meakin and F. Leyvraz, Phys. Rev. A31, 1171 (1986)

    Google Scholar 

  32. R. Kopelman, P. W. Klymko, J. S. Newhouse and L. W. Anacker, Phys. Rev. B 29, 3747 (1984)

    Article  CAS  Google Scholar 

  33. P. Meakin and H. E. Stanley, J. Phys. A: Math. Gen. 17, L173 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Leyvraz, F. (1988). Reaction Kinetics for Diffusion Controlled Aggregation. In: Amann, A., Cederbaum, L.S., Gans, W. (eds) Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics. NATO ASI Series, vol 235. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3005-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3005-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7850-4

  • Online ISBN: 978-94-009-3005-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics