Abstract
According to the old metaphor of classical cybernetics the brain can be considered as a computer. The question could be reversed: what neurobiology could offer to engineers of near-future generation computer systems.
Principles of the brain organization, ontogenetic neural development, plastic behavior and learning are interpreted in the spirit of the theory of dynamic systems. Neural pattern formation, pattern recognition and action can be treated by unified conceptual framework. Fault-tolerant, parallel structures capable of exhibiting “intelligent”, behaviour are hoped to be designed utilizing knowledges about biological information processing.
Keywords
- Cellular Automaton
- Brain Theory
- Generation Computer System
- Ocular Dominance Column
- Neural Center
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Ackley, D.H., Hinton, G.E. & Sejnowski, T.J.: A learning algorithm for Boltzmann machines. Cognitive Sci. 9(ll47–169) 1985.
Amari, S.: A method of statistical neurodynamics Kybernetik 14 (201–215) 1974.
Amari, S.: Field theory of self-organizing neural nets. IEEE Trans. SMC-13 (741–748) 1983.
Anninos, P.A., Beek, B., Csermely, T.J., Harth, E. &Perile, G.: Dynamics of neural structures. J. Theor. Biol. 26 (201–218) 1970.
Arbib, M.A.: Brain theory and cooperative computation. Human Neurobiol. 4 (201–218) 1985.
Arbib, M.A. &Amari, S.: Sensori-motor transformations in the brain -with a critique of the tensor theory of cerebellum -J. Theor. Biol. 112(123–155) 1985.
Arbib, M.A., Overton, K.J. &Lawton, D.T.: Perceptual systems for robots. Interdiscipl. Sci. Rev. 9(31–46) 1984.
Arneodo, A., Argoul, F., Richetti, P. &Roux, J.C.: The Belousov-Zhabotinskii reaction: a paradigm for theoretical studies of dynamical systems (manuscript).
Atkinson, J.: Human visual development over the first 6 month of life. A review and a hypothesis. Human Neurobiol. 3(61–74) 1984.
Ballard, D.H.: Cortical connections and parallel processing: Structure and function. Behav. Brain Sci. 9(67–120) 1986.
Ballard, D.H., Hinton, G.E. &Sejnowski, T.J.: Parallel visual computation. Nature 306(21–26) 1983.
Barna, G. &Erdi, P.: Pattern formation in neural systems II Noise-induced selective mechanism for the formation of ocular dominance columns. In: Cybernetics and Systems ‘86, Trappl. R. (ed), pp. 343–350, D. Reidel Publ. Company, 1986.
Barna, G. &Erdi, P.: ‘Normal’ and ‘abnormal’ dynamic behaviour during synaptic transmission. In: Computer Simulation in Brain Science. Cotteril, R.M.J. (ed.), Cambridge Universit Press (in press).
Bienenstock, E.: Dynamics of the central nervous system. In: Dynamics of Macrosystems. (Aubin, J.-P., Saari, D. &Sigmund, K. (eds.), Lect. Notes in Econ. &Math. Systems, pp. 3–20, Springer–Verlag, 1985.
Carter, F.L.: The molecular device computer: point of departure for large scale cellular automata. Physica 10D(175–194) 1984.
Clarke, P.G.H.: Chance, repetition, and error in the development of normal nervous system. Perspect. Biol. Med. 25.(2–19) 1981.
Conrad, M.:Microscopic-macroscopic interface in biological information processing.BioSystems 16(345–363)1984.
Conrad, M.: Microscopic-macroscopic interface in biological information processing. BioSystems 16(345–363) 1984.
Conrad, M.:On design principles for a molecular computer.Coram. ACM 28464–4801985.
Conrad, M.: On design principles for a molecular computer. Coram. ACM 28(464–480) 1985.
Changeux, J.-P.Couregge, P.Danchin, A.:A theory of the epigenesis of neural networks by selective stabilization of synapses.Proc. Natl. Acad. Sci. USA 70(2974–2978)1973.
Changeux, J.-P., Couregge, P. &Danchin, A.: A theory of the epigenesis of neural networks by selective stabilization of synapses. Proc. Natl. Acad. Sci. USA 70(2974–2978) 1973.
Changeux, J.-P.Heidmann, T.Patee, P.:Learning by selection.In: The biology of learning.Marler, P.,Terrace, H.S.(eds.) Dahlem Konferenzen 1984, pp. 115–133. Springer Verlag.
Changeux, J.-P., Heidmann, T., Patee, P.: Learning by selection. In: The biology of learning. Marler, P., &Terrace, H.S. (eds.) Dahlem Konferenzen 1984, pp. 115–133. Springer Verlag.
Choi, M.Y.Huberman, B.A.:Dynamic behaviour of nonlinear networks.Phys. Rev. A 28(1204–1206)1983.
Choi, M.Y. &Huberman, B.A.: Dynamic behaviour of nonlinear networks. Phys. Rev. A 28(1204–1206) 1983.
Cottrell, M.Fort, J.C.:A stochastic model of retinotopy: a self organizing process.Biol. Cybernetics 53(405–411)1986.
Cottrell, M. &Fort, J.C.: A stochastic model of retinotopy: a self organizing process. Biol. Cybernetics 53(405–411) 1986.
Edelman, G.M.Finkel, L.H.:Neuronal group selection in the cerebral cortex.In: Dynamic aspects of neocortical function,Edelman, G.M.,Gall, W.E.Cowan, W.M.(eds.), Wiley 1984.
Edelman, G.M. &Finkel, L.H.: Neuronal group selection in the cerebral cortex. In: Dynamic aspects of neocortical function, Edelman, G.M., Gall, W.E. &Cowan, W.M. (eds.), Wiley 1984.
Erdi, P.:Hierarchical thermodynamic approach to the brain.Intern. J. Neurosci.20(193–216)1983.
Erdi, P.: Hierarchical thermodynamic approach to the brain. Intern. J. Neurosci. 20(193–216) 1983.
Erdi, P. & Barna, G.: Self-organizing mechanism for the formation of ordered neural mappings. Biol. Cybernetics 51(93–101)1984.
Erdi, P. &Barna, G.: Self-organization of neural networks: noise-induced transition. Phys. Lett 107A(287–290)1985.
Erdi, P. &Szentagothai, J.: Neural connectivities: between determinism and randomness. In: Dynamics of Macrosystems. Lect. Notes in Econ. Math. Systems. (Aubin, J.-P., Saari, D. &Sigmund, K. (eds.). Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1985, pp. 21–29.
Feldman, J.A. &Ballard, D.H.: Connctionist models and their properties. Cognitive Sci. 6(205–254)1982.
Fukushima, K.: A hierarchical neural network model for associative memory. Biol. Cybernetics 50(105–113)1984.
Glansdorff, P. &Prigogine, I.: Thermodynamics of structure, stability and fluctuations. New York, Wiley-Interscience, 1971.
Glünder, H. : On functional concepts for the explanation of visual pattern recognition. Human. Neurobiol. 5(37–47)1986.
Goldman, P.S. &Nauta, W.J.H.: Columnar distribution of cortico-cortical fibers in frontal association, limbic and motor cortex of the developing Rhesus monkey. Brain Res. 122(393–413)1977.
Goldman -Rakic, P.: Modular organization of the prefrontal cortex. Trends in Neurosciences 7.(419–424)1984.
Guevara, M.R., Glass, L., Mackey, C. &Schrier, A.: Chaos in neurobiology. IEEE Trans. Systems, Man and Cybernetics, SMC-13(790–797)1983.
Hebb, D.O.: The organization of the behaviour. Wiley, New York, 1949.
Hillis, W.D.: The connection machine. MIT Press, 1986.
Hogg, T. &Hubermann, B.A.: Parallel computing structures capable of flexible associations and recognition of fuzzy inputs. J. Stat. Phys. 41(115–123)1985.
Holden, A.V. &Muhamed, M.A.: Chaotic activity in neural systems. Cybernetics and System Research 2, Trappl, R. (ed.), North-Holland, Amsterdam, pp. 245–250, 1984.
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79(2254–2258)1982.
Hopfield, J.J. &Tank, D.W.: “Neural” computation of decisions in optimization problems. Biol. Cybernetics 52(141–152)1985.
Horsthemke, W. &Lefever, R.: Noise-induced transition. Theory and applications in physics, chemistry and biology. Springer: Berlin-Heidelberg-Tokyo, 1984.
Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurons in the cat’s striate cortex. J. Physiol. 148(574–591)1959.
Kinzel, W.: Learning and pattern recognition in spin glass models. Z. Phys. B. 60(205–213)1985.
Kohonen, T.: Self-organization and associative memory. Springer, 1984.
Kohonen, T.: Representation of sensory information in self-organizing feature map, and relation of these maps to distributed memory networks. (manuscript) 1986.
Kossylin, J.M.: Externalizing mental images: a computational neuropsychological approach. Workshop on language for automatation, cognitive aspects of onfromation processing. IEEE 1985, pp. 110–115.
Loeb, G.: Finding common ground between robotics and physiology. Trends in Neurosciences 6(203–204)1983.
MacKay, D.M.: Cerebral organization and the conscious control of action. In: Brain and conscious experience, Eccles, J.C. (ed.): pp. 422–445 and 566–574, Springer 1966.
MacKay, D.M.: Mind Talk and Brain Talk. In: Handbook of cognitive neuroscience, Gazzaniga, M.S. (ed.), Plenum, New York, pp. 293–317, 1983.
Maturana, H.R. &Varela, F.J.: Autopoiesis and cognition. Reidel, Boston, 1980.
Mountcastle, V.B.: Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 20(408–434)1957.
Nicolis, J.S.: Chaotic dynamics of information processing with relevance to cognitiv brain functions. Kybernetes 14(167–172)1985.
Nicolis, J.S., Tsuda, I.: Chaotic dynamics of information processing: the ‘magic number seven plus-minus two’. Bull. Math. Biol. 47(343–365)1985.
Pellionisz, A.: Brain theory: connecting neurobiology to robotics. Tensor analysis: utilizing intrinsic coordinates to describe, understand and engineer functional geometries of intelligent organisms. J. Theor. Neurobiol. 2(185–211)1983.
Pellionisz, A. &Llinas, R.: Brain modeling by tensor network theory and computer simulation. The cerebellum: distributed processor for predictive coordination. Neurosci. 4(323–348)1979.
Peretto, P.: Collective properties of neural networks. A statistical physics approach. Biol. Cybern. 50(51–62)1984.
Peretto, P. &Niez, J.: Stochastic dynamics of neural networks. IEEE Trans. SMC-16(73–83)1986.
Ritten, H. &Schulten, K.: On the stationary state of Kohonen’s self-organizing sensory mapping. Biol. Cybernetics 54(99–106)1986.
Rosen, R.: Pattern generation in networks. Progr. Theor. Biol. 6(161–209)1981.
Rosenblatt, F. : Principle of neurodynamics. Washington D.C.: Spaston Books (1962).
Sagi, D. &Julesz, B.: “Where” and “what” in vision. Science 228(1217–1219)1985.
Saridis, G.N.: An integrated theory of intelligent machines by expressing the control performance entropy. Control-Theory and Advanced Technology 1(l25–138)1985.
Scheibel, M.E. &Sceibel, A.B.: Structural substrates for integrative patterns in the brain stem reticular core. In: Reticular formation in the brain. Jasper, H.H. et al (eds.), Little, Brown &Co., Boston, pp. 31–68, 1958.
Shepherd, G.M.: Neurobiology, Oxford Univ. Press, New York-Oxford, 1983.
Shimizu, H., Yamaguchi, Y., Tsuda, I. &Yano, M.: Pattern recognition on holonic information dynamics. In: Compleex systems -Operational approach. Haken, H. (ed.). Springer-Verlag, Berlin -Heidelberg -New York -Tokyo, 1985, pp. 225–233.
Stent, G.S.: Strength and weakness of the genetic approach to the development of the nervous system. Ann. Rev. Neurosci. 4(163–194)1981.
Szentagothai, J.: The local neuronal apparatus of the cerebral cortex. In: Buser, P.A. &Rougeul-Buser, A. (eds.): Cerebral correlates of conscious experience. North Holland, Amsterdam -New York -Oxford 1978, pp. 131–138.
Szentagothai, J.: The modular architectonic principle of neural centers. Rev. Physiol. Biochem. Pharmacol. 98(11–61)1983.
Szentagothai, J.: The neuronal architectonic principle of the neocortex. An. Acad, brasil. Cienc. 57(249–259)1985.
Szentagothai, J. &Erdi, P.: Outline of a general brain theory. Techn. Report, Central Res. Inst. Physics, Hung. Acad. Sci. 1983.
Tsuda, I.: A hermeneutic process of the brain. Prog. Theor. Phys. Suppl. 79(241–259)1984.
Uhr, L.: Massively parallel multi-computer hardware = software structures for learning. In: Complex systems -Operational approaches. Haken, H. (ed.), Springer Verlag, Berlin -Heidelberg -New York -Tokyo, 1985, pp. 212–224.
Ventriglia, F.: Kinetic approach to neural systems. I. Bull. Math. Biol. 36(535–544)1974.
Ventriglia, F.: Kinetic theory of neural systems: an overview. In: Dynamic phenomena in neurochemistry and neurophysics: theoretical aspects. (Erdi, P. ed). Central. Res. Inst. Physics, Budapest, 1985, pp. 39–43.
Ventriglia, F. &Erdi, P.: Statistical approach to the dynamics of cerebral cortex: some learning aspects (in preparation).
Von der Malsburg, Ch.: The correlation theory of brain function. Internal Report 81–2, Dept. Neurobiol. Max Planck Inst. f. Biophys. Chem. 1981.
Von der Malsburg, Ch. Nervous structures with dynamical links. Ber. Bunsen Ges. Phys. Chem. 89(700–709)1985.
Wilson, H.R. &Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13(55–80)1973.
Waddington, CH. : The strategy of the genes. Allen &Unwin, 1957.
Wolfram, S.: Cellular automata as models of complexity. Nature 311(419–424)1984.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1988 Kluwer Academic Publishers
About this chapter
Cite this chapter
Erdi, P. (1988). From Brain Theory to Future Generations Computer Systems. In: Carvallo, M.E. (eds) Nature, Cognition and System I. Theory and Decision Library, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2991-3_4
Download citation
DOI: https://doi.org/10.1007/978-94-009-2991-3_4
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-010-7844-3
Online ISBN: 978-94-009-2991-3
eBook Packages: Springer Book Archive