Advertisement

Molecular Models of Early Transition Metal Oxides: Polyoxoanions as Organic Functional Groups

Chapter
Part of the NATO ASI Series book series (ASIC, volume 231)

Abstract

Early transition metal oxides are known to be effective heterogeneous catalysts or catalyst precursors for numerous organic transformations, including methanol oxidation to give formaldehyde, methacrolein oxidation to give methacrylic acid, propylene oxidation to give acrolein, methane oxidation to give formaldehyde, and propylene metathesis to give ethylene and butene. Due to the difficulty of characterizing surface-bound intermediates, efforts have been made to synthesize and study the reaction chemistry of analogous polyoxoanion derivatives containing organic subunits. Several polyoxomolybdate derivatives have been structurally characterized during the past decade that incorporate simple organic moieties believed to be surface intermediates in these heterogeneous systems, including [(HCO2)2(Mo8O26)]6-, CH2Mo4O15H3-, [CH3C(CH2O)3]2(CH3CH2O)2Mo4O8, and [(CH3O)4(Mo8O)24]4-. More recently, two polyoxoanion systems have been investigated that illustrate solution pathways for incorporating organic groups into polyoxoanions and effecting organic oxidations and dehydrations. In the first, the niobotungstic acid esters Nb2W4019R3-, R = CH3, CH3CH2, (CH3)2CH, and (CH3)3C, have been prepared by reacting the appropriate alcohol with either the niobotungstic acid Nb2W4O19H3- or its anhydride (Nb2W4O18)2O6-. In the second system, molybdophosphoric acid esters such as (P3O9)MoO3CH2CH3 2- have been prepared from the appropriate alcohol and then degraded thermally or photochemically. The ethyl ester, for example, yields acetaldehyde plus ethanol thermally, and acetaldehyde, ethanol, plus ethylene photochemically.

Keywords

Molybdenum Oxide Alkoxy Group Ethoxy Group Molybdenum Trioxide Early Transition Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Machiels, U. Chowdry, R.H. Staley, F. Ohuchi, and A.W. Sleight, in Catalytic Conversions of Synthesis Gas and Alcohols to Chemicals, (Ed. R.G. Herman),p. 413, Plenum Press, New York (1984).Google Scholar
  2. 2.
    C.J. Machiels and A.W. Sleight, Chem. Uses Molybdenum, Proc. Int. Conf.,4th, 411 (1982).Google Scholar
  3. 3.
    S. Nakamura and H. Ichihashi, in New Horizons in Catalysis. Proceedings of the 7th International Congress on Catalysis, Tokyo, 30 June-4 July, 1980, (Studies in Surface Science and Catalysis, 7b, Eds. T. Seiyama and K. Tanabe), p. 755, Elsevier, Amsterdam (1981).CrossRefGoogle Scholar
  4. 4.
    R.K. Grasselli and J.D. Burrington, Adv. Catal. 30, 133 (1981).CrossRefGoogle Scholar
  5. 5.
    H.-F. Liu, R.-S. Liu, K.Y. Liew, R.E. Johnson, and J.H. Lunsford, J. Am. Chem. Soc. 106, 4117 (1984).CrossRefGoogle Scholar
  6. 6.
    M. Anpo, I. Tanahashi, and Y. Kubokawa, J. Chem. Soc., Faraday Trans. 1 78, 2121 (1982).Google Scholar
  7. 7.
    R.D. Adams, W.G. Klemperer, and R.-S. Liu, J. Chem. Soc., Chem. Commun., 256 (1979).Google Scholar
  8. 8.
    For a symmetrically bonded formate see: V.W. Day, M.R. Thompson, C.S. Day, W.G. Klemperer, and R.-S. Liu, J. Am. Chem. Soc. 102, 5971 (1980).CrossRefGoogle Scholar
  9. 9.
    V.W. Day, M.F. Fredrich, W.G. Klemperer, and R.-S. Liu, J. Am. Chem. Soc. 101, 491 (1979).CrossRefGoogle Scholar
  10. 10.
    For other molybdate-bound acetals, see reference 8.Google Scholar
  11. 11.
    A.J. Wilson, W.T. Robinson, and C.J. Wilkins, Acta Crystallogr., Sect. C 39, 54 (1983).CrossRefGoogle Scholar
  12. 12.
    E.M. Marron and R.L. Harlow, J. Am. Chem. Soc. 105, 6179 (1983); E.M. Marron and A.W. Sleight, Polyhedron 5, 129 (1986).CrossRefGoogle Scholar
  13. 13.
    W.H. Knoth and R.L. Harlow, J. Am. Chem. Soc. 103, 4265 (1981).CrossRefGoogle Scholar
  14. 14.
    C.J. Besecker, V.W. Day, W.G. Klemperer, and M.R. Thompson, Inorg. Chem. 24, 44 (1985).CrossRefGoogle Scholar
  15. 15.
    C.J. Besecker, V.W. Day, W.G. Klemperer, and M.R. Thompson, J. Am. Chem. Soc. 106, 4125 (1984).CrossRefGoogle Scholar
  16. 16.
    M. Dabbabi, M. Boyer, J.P. Launay, and Y. Jeannin, J. Electroanal. Chem. 76, 153 (1977).CrossRefGoogle Scholar
  17. 17.
    M.H. Chisholm, K. Folting, J.C. Huffman, and C.C. Kirkpatrick, Inorg. Chem. 23, 1021 (1984).CrossRefGoogle Scholar
  18. 18.
    W.E. Farneth, R.H. Staley, and A.W. Sleight, J. Am. Chem. Soc. 108, 2327 (1986).CrossRefGoogle Scholar
  19. 19.
    W.E. Farneth, F. Ohuchi, R.H. Staley, U. Chowdry, and A.W. Sleight, J. Phys. Chem. 89, 2493 (1985).CrossRefGoogle Scholar
  20. 20.
    V.W. Day, W.G. Klemperer, and C. Schwartz, submitted for publication.Google Scholar
  21. 21.
    L. Kihlborg, Ark. Kemi 21, 357 (1963).Google Scholar
  22. 22.
    V.W. Day and W.G. Klemperer, Science 228, 533 (1985).CrossRefGoogle Scholar
  23. 23.
    V.W. Day, W.G. Klemperer, and R.C. Wang, manuscript in preparation.Google Scholar
  24. 24.
    N.J. Turro, Modern Molecular Photochemistry, Chapters 10 and 1, Benjamin, Menlo Park, California (1978).Google Scholar
  25. 25.
    M.T. Pope, Heteropoly and Isopoly Oxymetalates, Chapter 7, Springer, New York (1983).Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  1. 1.Crystalytics CompanyLincolnUSA
  2. 2.Department of ChemistryUniversity of NebraskaLincolnUSA
  3. 3.Department of ChemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations