Advertisement

Reaction of Organometallics with Surfaces of Metal Oxides

Chapter
Part of the NATO ASI Series book series (ASIC, volume 231)

Abstract

Organometallic complexes can be introduced onto metal oxide supports either by direct bonding or via an intervening ligand. The former method uses the diverse reaction sites available on oxide surfaces. The chemisorption processes may be considered in the same way as reactions of organometallic complexes in solution. For example, interaction of Rh(allyl)3 with silica causes an electrophilic cleavage of one metal-allyl bond to generate a new metal centre, viz. [Si]-ORh(allyl)2. Alternatively, interaction of Ru3(CO)12 with silica proceeds via an oxidative addition reaction of a silanol group across one of the metal-metal bonds. Nuclearity is not always maintained during anchoring procedures, as in the case of the interaction of Rh4(CO)12 with alumina, in which mononuclear metal centres are produced. Some of the coordination centres derived from these grafted organometallic complexes have close analogues in mainstream organometallic chemistry; others appear to have no discrete counterpart at present and offer a challenge to the synthetic chemist. Organometallics also provide alternative routes to supported metal particles. In some instances these may be formed under much milder conditions than conventional reductions of metal salts. By virtue of the differing kinetics involved, different (often smaller) particle sizes, compositions, and size distributions become available. Ligandtethered complexes may be synthesised with high specificity. However, subsequent surface reactions occur to give new coordination centres. If the aim is to anchor a known homogeneous catalyst, then precautions must be taken to avoid these, either by protective silylation or by design of a stabilising tethering ligand. But the original tethered complex may be used as a catalyst precursor, and so these surface reactions may be of interest. Many new catalysts have been prepared by supporting organometallic complexes on oxide supports. Establishing the metal coordination site requires a combination of total product analysis and direct spectroscopic measurements characterizing the supported complex, preferably aided by reference to close model compounds. This is now considerably easier with the range of techniques presently available. For a high proportion of materials, the oxide surface binding site is not understood. Progress in this is necessary to understand catalytic activity and selectivity on a molecular level. Nevertheless, the relatively homogeneous dispersion of metal centres as compared to conventional heterogeneous catalysts gives some prospect of this being achieved.

Keywords

Metal Centre Organometallic Complex Metal Carbonyl Selective Propene Oxidation Alkene Hydrogenation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu.I. Yermakov, B.N. Kuznetsov, and V.A. Zakharov, Catalysis by Supported Metal Complexes, Elsevier (1981).Google Scholar
  2. 2.
    F.R. Hartley, Supported Metal Complexes, Reidel (1985).CrossRefGoogle Scholar
  3. 3.
    J.R. Anderson, Structure of Metallic Catalysts, Academic (1975).Google Scholar
  4. 4.
    M.L. Hair, p. 25 in reference 5, and references therein.Google Scholar
  5. 5.
    Silanes, Surfaces and Interfaces, (Ed. D.E. Leyden), Gordon and Breach (1986).Google Scholar
  6. 6.
    D.W. Sindorf and G.E. Maciel, J. Am. Chem. Soc. 105, 1487 (1983); J. Phys. Chem. 87, 5576 (1983).CrossRefGoogle Scholar
  7. 7.
    Knozinger and P. Ratnasamy, Catal. Rev. Sci. Eng. 17, 31 (1978).CrossRefGoogle Scholar
  8. C. Naccache, Y. Kondratoff, R.C. Pink, and B. Imelik, J. Chim. Phys. 63, 341 (1966).Google Scholar
  9. 9.
    M.L. Myers and P.G. Wahlbeck, J. Phys. Chem. 87, 1008 (1983).CrossRefGoogle Scholar
  10. 10.
    H.P. Boehm, Discuss. Faraday Soc. 52, 264 (1971).CrossRefGoogle Scholar
  11. 11.
    J.A.R. van Veen, F.T.G. Veltmaat, and G. Jonkers, J. Chem. Soc., Chem. Commun., 1656 (1985).Google Scholar
  12. 12.
    Che, C. Naccache, and B. Imelik, J. Catal. 24, 328 (1972).CrossRefGoogle Scholar
  13. 13.
    A.J. Tench and R.L. Nixon, Trans. Faraday Soc. 63, 2254 (1967).CrossRefGoogle Scholar
  14. 14.
    Zecchina, M.G. Lofthouse, and F.S. Stone, J. Chem. Soc., Faraday Trans. 1 71, 1476 (1975).Google Scholar
  15. 15.
    S. Coluccio, A.J. Tench, and R.L. Segall, J. Chem. Soc., Faraday Trans. 1 75, 1769 (1979).Google Scholar
  16. 16.
    E. Guglielminotti, S. Coluccia, E. Garrone, L. Cerroti, and A. Zecchina, J. Chem. Soc., Faraday Trans. 1 75, 96 (1979).Google Scholar
  17. 17.
    L.L. Murrell, in Advanced Materials in Catalysis, (Eds. J.J. Burton and R.L. Garten), p. 236, Academic (1977).Google Scholar
  18. 18.
    G.S. Caravajal, D.E. Leyden, and G.E. Maciel, p. 283 in reference 5.Google Scholar
  19. 19.
    L. Bemi, H.C. Clark, J.A. Davies, C.A. Fyfe, and R.E. Wasylishen, J. Am. Chem. Soc. 104, 438 (1982).CrossRefGoogle Scholar
  20. 20.
    E.S. Davie, D.A. Whan, and C. Kemball, J. Catal. 24, 272 (1972), and references therein.Google Scholar
  21. 21.
    Brenner and R.L. Burwell, Jr., J. Catal. 52, 364 (1978).CrossRefGoogle Scholar
  22. 22.
    R.F. Howe, D.E. Davidson, and D.A. Whan, J. Chem. Soc., Faraday Trans 1 68, 2266 (1972).Google Scholar
  23. 23.
    D.M. Adams, I.R. Gardner, and N.D. Parkyns, J. Catal. 45, 145 (1976).CrossRefGoogle Scholar
  24. 24.
    R.F. Howe and I.R. Leith, J. Chem. Soc., Faraday Trans. 1 69, 1967 (1973).Google Scholar
  25. 25.
    Brenner, D.A. Hucul, and S.J. Hardwick, Inorg. Chem. 18, 1478.(1979).CrossRefGoogle Scholar
  26. 26.
    A. Kazusaka and R.F. Howe, J. Mol. Catal. 9, 183 (1980).CrossRefGoogle Scholar
  27. 27.
    R.F. Howe, Inorg. Chem. 15, 486 (1976).CrossRefGoogle Scholar
  28. 28.
    I.W. Stolz, G.R. Dobson, and R.K. Sheline, Inorg. Chem. 2, 323 (1963).CrossRefGoogle Scholar
  29. 29.
    Brenner and R.L. Burwell, Jr., J. Am. Chem. Soc. 97, 2565 (1975).CrossRefGoogle Scholar
  30. 30.
    Brenner and R.L. Burwell, Jr., J. Catal. 52, 353 (1978).CrossRefGoogle Scholar
  31. 31.
    Brenner and D.A. Hucul, J. Am. Chem. Soc. 102, 2484 (1980).CrossRefGoogle Scholar
  32. 32.
    D.A. Hucul and A. Brenner, J. Phys. Chem. 85, 496 (1981).CrossRefGoogle Scholar
  33. 33.
    R.L. Burwell, Jr., J. Catal. 86, 301 (1984).CrossRefGoogle Scholar
  34. 34.
    Kazusaka and R.F. Howe, J. Mol. Catal. 9, 199 (1980).CrossRefGoogle Scholar
  35. 35.
    Brenner and D.A. Hucul, J. Catal. 61, 216 (1980).CrossRefGoogle Scholar
  36. 36.
    E. Guglielminotti and A. Zecchina, J. Chim. Phys. 78, 89 (1981).Google Scholar
  37. 37.
    F. Hugues, A.K. Smith, Y. Ben Taarit, J.M. Basset, D. Commereuc, and Y. Chauvin, J. Chem. Soc., Chem. Commun., 69 (1980).Google Scholar
  38. 38.
    Brenner and D.A. Hucul, Inorg. Chem. 18, 2836 (1979).CrossRefGoogle Scholar
  39. 39.
    E. Guglielminotti, A. Zecchina, F. Boccuzzi, and E. Bonello, in Growth and Properties of Metal Clusters, (Ed. J. Bourdon), p. 165, Elsevier (1980); A. Zecchina, E. Garrone, and E. Guglielminotti, in Catalysis, (Eds. G.C. Bond and G. Webb), vol.6, p. 128, Royal Society of Chemistry (1983).Google Scholar
  40. 40.
    F. Hugues, J.A. Dalmon, P. Bussiere, A.K. Smith, J.M. Basset, and D. Olivier, J. Phys. Chem. 86, 5136 (1982).CrossRefGoogle Scholar
  41. 41.
    K. Lazar, K. Malusek, J. Mink, S. Dubos, L. Guczi, A. Vizi-Orosz, L. Marko, and W.M. Reiff, J. Catal. 87, 163 (1984).CrossRefGoogle Scholar
  42. 42.
    J. Robertson and G. Webb, Proc. R. Soc. London, A 341, 383 (1974).CrossRefGoogle Scholar
  43. 43.
    Theolier, A. Choplin, L. D’ornelas, J.M. Basset, G.M. Zanderighi, R. Ugo, R. Psaro, and C. Sourisseau, Polyhedron 2, 95Google Scholar
  44. 44.
    J.M. Basset and A. Choplin, J. Mol. Catal. 21, 95 (1983).Google Scholar
  45. 45.
    V.D. Alexiev, N. Binsted, J. Evans, G.N. Greaves, and R.J. Price, J. Chem. Soc., Chem. Commun., 395 (1987).Google Scholar
  46. 46.
    J. Evans and G.S. Multy, J. Chem. Soc., Dalton Trans., 1123; N. Binsted, J. Evans, G.N. Greaves, and R.J. Price, unpublished results.Google Scholar
  47. 47.
    R. Pierantozzi, E.G. Valagene, A.F. Nordquist, and P.N. Dyer, J. Mol. Catal. 21, 189 (1983).Google Scholar
  48. 48.
    Zecchina, E. Guglieminotti, A. Bossi, and M. Camia, J. Catal. 74, 225, 240, 252 (1982); V.L. Kuznetsov, A.T. Bell, and Y.I. Yermakov, J. Catal. 65, 374 (1980).CrossRefGoogle Scholar
  49. 49.
    Besson, B. Moraweck, A.K. Smith, J.M. Basset, R. Psaro, A. Fusi, and R. Ugo, J. Chem. Soc., Chem. Commun., 569 (1980).Google Scholar
  50. 50.
    R. Psaro, R. Ugo, G.M. Zanderighi, B. Besson, A.K. Smith, and J.M. Basset, J. Organomet. Chem. 213, 215 (1981).CrossRefGoogle Scholar
  51. 51.
    L. D’Ornelas, A. Choplin, J.M. Basset, L.-Y. Hsu, and S.G. Shore, Nouv. J. Chim. 9, 155 (1985).Google Scholar
  52. 52.
    S.L. Cook, J. Evans, G.S. McNulty, and G.N. Greaves, J. Chem. Soc., Dalton Trans., 7 (1986).Google Scholar
  53. 53.
    G. Collier, D.J. Hunt, S.D. Jackson, R.B. Moyes, I.A. Pickering, P.B. Wells, A.F. Simpson, and R. Whyman, J. Catal. 80, 154 (1983).CrossRefGoogle Scholar
  54. 54.
    M. Deeba, B.J. Streusand, G.L. Schrader, and B.C. Gates, J. Catal. 69, 218 (1981).CrossRefGoogle Scholar
  55. 55.
    F.B.M. Duivenvoorden, D.C. Koningsberger, Y.S. Uh, and B.C. Gates, J. Am. Chem. Soc. 108, 6254 (1986).CrossRefGoogle Scholar
  56. 56.
    H. Knözinger and Y. Zhao, J. Catal. 71 337 (1981).CrossRefGoogle Scholar
  57. 57.
    H. Knözinger, Y. Zhao, B. Tesche, R. Barth, R. Epstein, B.C. Gates, and J.P. Scott, Discuss. Faraday Soc. 72, 53 (1981).CrossRefGoogle Scholar
  58. 58.
    J. Schwank, L.F. Allard, M. Deeba, and B.C. Gates, J. Catal. 84, 27 (1983).CrossRefGoogle Scholar
  59. 59.
    V.A. Shvets, A.L. Tarasov, V.B. Kazansky, and H. Knozinger, J. Catal. 86, 223 (1984).CrossRefGoogle Scholar
  60. 60.
    M. Deeba, J.P. Scott, R. Barth, and B.C. Gates, J. Catal. 71, 373 (1981).CrossRefGoogle Scholar
  61. 61.
    R. Psaro, C. Dossi, and R. Ugo, J. Mol. Catal. 21, 331 (1983).Google Scholar
  62. 62.
    A Theolier, A.K. Smith, M. Leconte, J.M. Basset, G.M. Zanderighi, R. Psaro, and R. Ugo, J. Qrganomet. Chem. 91, 415 (1980).CrossRefGoogle Scholar
  63. 63.
    J.L. Bilhou, V. Bilhou-Bougnol, W.F. Graydon, J.M. Basset, A.K. Smith, G.M. Zanderighi, and R. Ugo, J. Qrganomet. Chem. 153, 73 (1978).CrossRefGoogle Scholar
  64. 64.
    G.C. Smith, T.J. Chojnacki, S.R. Dasgupta, K. Iwatate, and K.L. Watters, Inorg. Chem. 14, 1419 (1975).CrossRefGoogle Scholar
  65. 65.
    A.K. Smith, F. Hugues, A. Theolier, J.M. Basset, R. Ugo, G.M. Zanderighi, J.L. Bilhou, V. Bilhou-Bougnol, and W.F. Graydon, Inorg. Chem. 18, 3104 (1979).CrossRefGoogle Scholar
  66. 66.
    J. Evans and G.S. McNulty, J. Chem. Soc., Dalton Trans., 587 (1984); N. Binsted, J. Evans, G.N. Greaves, and R.J. Price, unpublished results.Google Scholar
  67. 67.
    K.L. Watters, R.F. Howe, T.P. Chojnacki, C.-M. Fu, R.L. Schneider, and N.-B. Wong, J. Catal. 66, 424 (1980).CrossRefGoogle Scholar
  68. 68.
    S.L.T. Anderson, K.L. Watters, and R.F. Howe, J. Catal. 69, 212 (1981).CrossRefGoogle Scholar
  69. 69.
    J.B.A.D. van Zon, D.C. Koningsberger, H.F.J, van’t Blik, and D.E. Sayers, J. Chem. Phys. 82, 5742 (1985); H.F.J, van’t Blik, J.B.A.D. van Zon, T. Huizinga, J.C. Vis, D.C. Koningsberger, and R. Prins, J. Am. Chem. Soc. 107, 3139 (1985).CrossRefGoogle Scholar
  70. 70.
    J.H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts and Applications, Wiley (1983).Google Scholar
  71. 71.
    J.R. Anderson, P.S. Elmes, R.F. Howe, and D.E. Mainwaring, J. Catal. 50, 508 (1977).CrossRefGoogle Scholar
  72. 72.
    J.R. Budge, J.P. Scott, and B.C. Gates, J. Chem. Soc., Chem. Commun., 342 (1983).Google Scholar
  73. 73.
    A Choplin, L. Huang, J.M. Basset, R. Mathieu, U. Siriwardane, and S.G. Shore, Organometallics 5, 1547 (1986).CrossRefGoogle Scholar
  74. 74.
    A Choplin, L. Huang, A. Theolier, P. Gallezot, J.M. Basset, U. Siriwardane, S.G. Shore, and R. Mathieu, J. Am. Chem. Soc. 108, 4224 (1986).CrossRefGoogle Scholar
  75. 75.
    J.R. Budge, B.F. Lücke, B.C. Gates, and J. Toran, J. Catal. 91, 272 (1985).CrossRefGoogle Scholar
  76. 76.
    Choplin, M. Leconte, J.M. Basset, S.G. Shore, and W.-L. Hsu, J. Mol. Catal. 21, 389 (1983).Google Scholar
  77. 77.
    D.G.H. Ballard, Adv. Catal. 23, 267 (1973).Google Scholar
  78. 78.
    O.A. Yefimov, A.I. Minkov, V.A. Zakharov, and Yu. I. Yermakov, Kinet. Katal. 17, 995 (1976); Chem. Abs. 85, 160656 (1976).Google Scholar
  79. 79.
    G.A. Nesterov, V.A. Zakharov, Ye. A. Paukshtis, E.N. Yurchenko, and Yu. I. Yermakov, Kinet. Katal. 20, 429 (1979).Google Scholar
  80. 80.
    J. Smith, W. Mowat, D.A. Whan, and E.A.V. Ebsworth, J. Chem. Soc., Dalton Trans., 1742 (1974).Google Scholar
  81. 81.
    M.D. Ward, T.V. Harris, and J. Schwartz, J. Chem. Soc., Chem. Commun., 357 (1980).Google Scholar
  82. 82.
    M.D. Ward and J. Schwartz, J. Mol. Catal. 11, 397 (1981).CrossRefGoogle Scholar
  83. 83.
    J. Schwartz, Acc. Chem. Res. 18, 302 (1985).CrossRefGoogle Scholar
  84. 84.
    H.C. Foley, S.J. Danio, K.D. Tau, K.J. Chao, J.H. Onuferko, C. Dybowski, and B.C. Gates, J. Am. Chem. Soc. 105, 3074 (1983).CrossRefGoogle Scholar
  85. 85.
    M.D. Ward and J. Schwartz, Organometallics 1 1030 (1982).CrossRefGoogle Scholar
  86. 86.
    F.J. Karol and R.N. Johnson, J. Polym. Sci. A-1 13, 1607 (1975).Google Scholar
  87. 87.
    Rebenstorf, B. Johnson, and R. Larsson, Acta Chem. Scand. A36, 695 (1982).CrossRefGoogle Scholar
  88. 88.
    Y. Iwasawa, T. Chiba, and N. Ito, J. Catal. 99, 95 (1986).CrossRefGoogle Scholar
  89. 89.
    F.J. Karol, G.L. Karapinka, C. Wu, A.W. Dow, R.N. Johnson, and W.L. Carrick, J. Polym. Sci. A-1 10, 2621 (1972).CrossRefGoogle Scholar
  90. 90.
    F.J. Karol, C. Wu, W.T. Reichle, and N.J. Maraschin, J. Catal. 60, 68 (1979).CrossRefGoogle Scholar
  91. 91.
    F.J. Karol, W.L. Munn, G.L. Goeke, B.E. Wagner, and N.J. Maraschin, J. Polym. Sci. A-1 16, 771 (1978).Google Scholar
  92. 92.
    Y. Iwasawa, S. Ogasawara, and M. Soma, Chem. Lett., 1039 (1987).Google Scholar
  93. 93.
    Y. Iwasawa, H. Ichinose, S. Ogasawara, and M. Soma, J. Chem. Soc., Faraday Trans. 1 77, 1763 (1981).Google Scholar
  94. 94.
    Y. Iwasawa, Y. Sato, and H. Kuroda, J. Catal. 82, 289 (1983).CrossRefGoogle Scholar
  95. 95.
    Y. Iwasawa and M. Yamagishi, J. Catal. 82, 373 (1983).CrossRefGoogle Scholar
  96. 96.
    Y. Iwasawa, N. Ito, H. Ishii, and H. Kuroda, J. Chem. Soc., Chem. Commun., 827 (1985).Google Scholar
  97. 97.
    R.B. Bowman, R. Nakamura, P.J. Fagan, R.L. Burwell, Jr., and T.J. Marks, J. Chem. Soc., Chem. Commun., 257 (1981).Google Scholar
  98. 98.
    M.-Y. He, R.L. Burwell, Jr., and T.J. Marks, Organometallics 2, 566 (1983).CrossRefGoogle Scholar
  99. 99.
    M.-Y. He, G. Xiong, P.J. Toscano, R.L. Burwell, Jr., and T.J. Marks, J. Am. Chem. Soc. 107, 653 (1985).CrossRefGoogle Scholar
  100. 100.
    P.J. Toscano and T.J. Marks, J. Am. Chem. Soc. 107, 653 (1985).CrossRefGoogle Scholar
  101. 101.
    K.G. Allum, R.D. Hancock, I.V. Howell, S. Menzie, R.C. Pitkethly, and P.J. Robinson, J. Organomet. Chem. 87, 203 (1975).CrossRefGoogle Scholar
  102. 102.
    K.G. Allum, R.D. Hancock, I.V. Howell, T.E. Lester, S. Menzie, R.C. Pitkethly, and P.J. Robinson, J. Catal. 43, 331 (1976).CrossRefGoogle Scholar
  103. 103.
    K.G. Allum, R.D. Hancock, I.V. Howell, R.C. Pitkethly, and P.J. Robinson, J. Catal. 43, 322 (1976).CrossRefGoogle Scholar
  104. 104.
    M. Czakova and M. Capka, J. Mol. Catal. 11 313 (1981).CrossRefGoogle Scholar
  105. 105.
    Z.M. Michalska, M. Capka, and J. Stoch, J. Mol. Catal. 11 323 (1981).CrossRefGoogle Scholar
  106. 106.
    E.D. Nyberg and R.S. Drago, J. Am. Chem. Soc. 103, 4966 (1981).CrossRefGoogle Scholar
  107. 107.
    D.K. Liu and M.S. Wrighton, J. Am. Chem. Soc. 104, 898 (1982).CrossRefGoogle Scholar
  108. 108.
    D.K. Lui, M.S. Wrighton, D.R. McKay, and G.E. Maciel, Inorg. Chem. 23, 212 (1984).CrossRefGoogle Scholar
  109. 109.
    J.L. Bilhou, V. Bilhou-Bougnol, W.F. Graydon, J.M. Basset, and A.K. Smith, J. Mol. Catal. 8, 411 (1980).CrossRefGoogle Scholar
  110. 110.
    R.J. Crowte, Ph.D. Thesis, University of Southampton, (1985).Google Scholar
  111. 111.
    H. Knözinger, E.W. Thornton, and M. Wolf, J. Chem. Soc., Faraday Trans. 1 75, 1888 (1979).Google Scholar
  112. 112.
    S.C. Brown and J. Evans, J. Chem. Soc., Chem. Commun., 1063 (1978).Google Scholar
  113. 113.
    R. Pierantozzi, K.J. McQuade, B.C. Gates, M. Wolf, H. Knözinger, and W. Ruhmann, J. Am. Chem. Soc. 101, 5436 (1979).CrossRefGoogle Scholar
  114. 114.
    S.C. Brown and J. Evans, J. Mol. Catal. 11, 143 (1981).CrossRefGoogle Scholar
  115. 115.
    M.B. Freeman, M.A. Patrick, and B.C. Gates, J. Catal. 73, 82 (1982).CrossRefGoogle Scholar
  116. 116.
    V.D. Alexiev, N.J. Clayden, S.L. Cook, C.M. Dobson, J. Evans, and D.J. Smith, J. Chem. Soc., Chem. Commun., 938 (1986).Google Scholar
  117. 117.
    S.L. Cook, Ph.D. Thesis, University of Southampton, (1985).Google Scholar
  118. 118.
    V.D. Alexiev, Ph.D. Thesis, University of Southampton, (1987).Google Scholar
  119. 119.
    N. Binsted, S.L. Cook, J. Evans, and G.N. Greaves, J. Chem. Soc., Chem. Commun., 1103 (1985).Google Scholar
  120. 120.
    S.L. Cook and J. Evans, J. Chem. Soc., Chem. Commun., 713 (1983).Google Scholar
  121. 121.
    J. Evans and R.J. Price, unpublished results.Google Scholar
  122. 122.
    H. Pichler and W. Burgert, Brennst. Chem. 49, 5 (1968).Google Scholar
  123. 123.
    H. Pichler, N. Meier, W. Gabler, R. Gaertner, and D. Kiossis, Brennst. Chem. 48, 266 (1967;.Google Scholar
  124. 124.
    H.H. Lamb, T.R. Krause, and B.C. Gates, J. Chem. Soc., Chem. Commun., 821 (1986).Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  1. 1.Department of ChemistryThe University SouthamptonEngland

Personalised recommendations