Reactions of Organometallics with the Surfaces of Zeolites

Part of the NATO ASI Series book series (ASIC, volume 231)


An account is given of the ways in which catalytically active organometallic species can be prepared or reacted within the intracrystalline volume of zeolites. Following a discussion of the chemical and physical factors influencing the interactions of metal complexes and zeolite frameworks, three types of intrazeolitic complexes are described: exchangeable cation-based complexes, occluded (neutral) organometallic species, and framework site-based coordination compounds.

Finally, some of the possible future trends are presented.


Zeolite Framework Metal Carbonyl Carbonyl Complex Steric Constraint Zeolite Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Liebau, Zeolites 3, 191 (1983).CrossRefGoogle Scholar
  2. 2.
    T.J. Pinnavaia and R.A. Schoonheydt, Eds., Metal Complex Catalysts in Intracrystalline Environment, J. Mol. Catal. 27 (1984) (special volume), and references therein.Google Scholar
  3. 3.
    B.V. Romanovsky, Acta Phys. Chem. 31, 215 (1985), and references therein.Google Scholar
  4. 4.
    N. Jaeger, P. Plath, and G. Schulz-Ekloff, Acta Phys. Chem. 31, 189 (1985).Google Scholar
  5. 5.
    P.B. Weisz, Pure Appl. Chem. 52, 2091 (1980).CrossRefGoogle Scholar
  6. 6.
    E.G. Derouane, in Catalysis on the Energy Scene (Eds. S. Kaliaguine and A. Mahay), Elsevier, Amsterdam; Stud. Surf. Sci. Catal. 19, 1 (1984).Google Scholar
  7. 7.
    D. Barthomeuf, J. Phys. Chem. 83, 249 (1979).CrossRefGoogle Scholar
  8. 8.
    K. Seff, Acc. Chem. Res. 9, 121 (1976).CrossRefGoogle Scholar
  9. 9.
    K. Mizuno, S. Imamura, and J.H. Lunsford, Inorg. Chem. 23, 3510 (1984).CrossRefGoogle Scholar
  10. 10.
    S. Imamura and J.H. Lunsford, Langmuir 1, 326 (1985).CrossRefGoogle Scholar
  11. 11.
    J.A. Rabo, R.D. Bezman, and M.L. Poutsma, Acta Phys. Chem. 24, 39 (1978).Google Scholar
  12. 12.
    J. Fraissard, in Catalysis by Zeolites (Eds. B.Imelik et al), Elsevier, Amsterdam; Stud. Surf. Sci. Catal. 5, 343 (1980).Google Scholar
  13. 13.
    E.G. Derouane, J. Catal. 100, 541 (1986).CrossRefGoogle Scholar
  14. 14.
    H. Diegruber and P.J. Plath, in Metal Microstructures in Zeolites (Eds. P. Jacobs et a1.), Elsevier, Amsterdam; Stud. Surf. Sci. Catal. 12, 23 (1982).Google Scholar
  15. 15.
    L. Edwards and M. Gouterman, J. Mol. Spectrosc. 33, 292 (1970).CrossRefGoogle Scholar
  16. 16.
    H. Diegruber, Ph.D. Thesis, Universität Bremen (1984).Google Scholar
  17. 17.
    J. Zwart and R. Snel, J. Mol. Catal. 30, 305 (1985).CrossRefGoogle Scholar
  18. 18.
    D.C. Bailey and S.H. Langer, Chem. Rev. 81, 109 (1981).CrossRefGoogle Scholar
  19. 19.
    E.G. Derouane, J.B. Nagy, and J.C. Vedrine, J. Catal. 46, 434 (1977).CrossRefGoogle Scholar
  20. 20.
    J.B. Nagy, M. van Eeno, and E.G. Derouane, J. Catal. 58, 230 (1979).CrossRefGoogle Scholar
  21. 21.
    M.B. Ward, K. Mizuno, and J. Lunsford, J. Mol. Catal. 27, 1 (1984).CrossRefGoogle Scholar
  22. 22.
    F. Lefebvre, Ph.D. Thesis, Lyon (1985).Google Scholar
  23. 23.
    M. Tielen, M. Geelen, and P.A. Jacobs, Acta Phys. Chem. 31, 1 (1985).Google Scholar
  24. 24.
    B.M. Lok, M.B. Kristoffersen, and E.M. Flanigen, Eur. Patent Appl. 121,232 (1984).Google Scholar
  25. 25.
    C.A. Messina, B.M. Lok, and E.M. Flanigen, Eur. Patent Appl. 131,946 (1985).Google Scholar
  26. 26.
    J.B. Parise, J. Chem. Soc., Chem. Commun., 686 (1985).Google Scholar
  27. 27.
    A. Leclaire, M.M. Borel, A. Grandin, and B. Raveau, Mater. Chem. Phys. 12, 537 (1985).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  1. 1.Center for Advanced Materials Research, Laboratory of CatalysisFacultés Universitaires N.D. de la PaixBelgium

Personalised recommendations