Advertisement

Zeolite Synthesis: An Overview

Chapter
Part of the NATO ASI Series book series (ASIC, volume 231)

Abstract

An account is given of zeolite synthesis, emphasizing the following aspects: the ranges in Si/Al ratios found for individual zeolites, and for the zeolite family as a whole; the mineralising role of water and OH- ion and the effect pH of upon crystallisation kinetics; the guest-host relationship as a major factor in synthesis of all kinds of porous crystal; templates; the analysis of crystallisation kinetics in terms of linear growth rates and rates of nucleation; and Ostwald’s law of successive transformations in zeolite chemistry. A phenomenological treatment of nucleation is also given.

Keywords

Guest Molecule Linear Growth Rate Synthetic Zeolite Zeolite Synthesis Isomorphous Replacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.F. Cronstedt, Akad. Handl. Stockholm 17, 120 (1756).Google Scholar
  2. 2.
    R.M. Barrer, Pure Appl. Chem. 51, 1091 (1979).CrossRefGoogle Scholar
  3. 3.
    R.M. Milton, U.S. Patent 2, 882, 244 (1959).Google Scholar
  4. 4.
    D.W. Breck and N.A. Acara, U.S. Patent 3,216,789 (1965).Google Scholar
  5. 5.
    Union Carbide, U.S. Patent 3,414,602 (1968).Google Scholar
  6. 6.
    R. Aiello and R.M. Barrer, J. Chem. Soc. A, 1470 (1970).Google Scholar
  7. 7.
    R.M. Barrer and E.A.D. White, J. Chem. Soc., 1167 (1951).Google Scholar
  8. 8.
    R.M. Barrer, J. Chem. Soc., 127 (1948).Google Scholar
  9. 9.
    R. Wadlinger, G.T. Kerr, and E.J. Rosinski, U.S. Patent 3, 308, 069 (1967).Google Scholar
  10. 10.
    H.E. Robson, D.P. Shoemaker, R.A. Ogilvie, and P.C. Manor, Adv. Chem. Ser. 121, 106 (1973).CrossRefGoogle Scholar
  11. 11.
    W. Sieber and W.M. Meier, Helv. Chim. Acta 57, 1533 (1974).CrossRefGoogle Scholar
  12. 12.
    J. Ciric, U.S. Patent 3,411,874 (1968).Google Scholar
  13. 13.
    G. Kokotailo and J. Ciric, Adv. Chem. Ser. 101, 109 (1971).CrossRefGoogle Scholar
  14. 14.
    M.K. Rubin, E.J. Rosinski, and C.J. Planck, U.S. Patent 4,151,189 (1979).Google Scholar
  15. 15.
    P.Chu, U.S. Patent 3,709,979 (1973).Google Scholar
  16. 16.
    E.J. Rosinski and M.K. Rubin, U.S. Patent 3,832,449 (1974).Google Scholar
  17. 17.
    D.H. Olson, E.W. Valyocsik, and R.B. Calvert, Eur. Patent A0102716 (1984).Google Scholar
  18. 18.
    C.J. Plank, E.J. Rosinski, and M.K. Rubin, U.S. Patent 4, 076, 842 (1978).Google Scholar
  19. 19.
    J.L. Schlenker, F.G. Dwyer, E.E. Jenkins, W.J. Rohrbaugh, G.T. Kokotailo, and W.M. Meier, Nature (London) 294, 340 (1981).CrossRefGoogle Scholar
  20. 20.
    R.M. Barrer and P.J. Denny, J. Chem. Soc., 971 (1961).Google Scholar
  21. 21.
    G.T. Wadlinger, E.J. Rosinski, and C.J. Plank, U.S. Patent 3,375,205 (1968).Google Scholar
  22. 22.
    G.T. Kerr, Inorg. Chem. 5, 1537 (1966).CrossRefGoogle Scholar
  23. 23.
    G.H. Kuhl, Inorg. Chem. 10, 2488 (1971).CrossRefGoogle Scholar
  24. 24.
    R.M. Barrer and D.J. Marshall, J. Chem. Soc., 2296 (1964).Google Scholar
  25. 25.
    H.C. Duecker, A. Weiss, and C.R. Guerra, U.S. Patent 3,567,372(1971).Google Scholar
  26. 26.
    R.M. Barrer and D.E Mainwaring, J. Chem. Soc., Dalton Trans., 2534 (1972).Google Scholar
  27. 27.
    C. Colella and R. Aiello, Annali di Chimica 61, 721 (1971).Google Scholar
  28. 28.
    G.T. Kerr, Science 140, 1412 (1963); Inorg. Chem. 5, 1539 (1966).CrossRefGoogle Scholar
  29. 29.
    E.M. Flanigen, J.M. Bennett, R.W. Grose, J.P. Cohen, R.L. Patton, R.M. Kirchner and J.V. Smith, Nature (London) 271, 512 (1978).CrossRefGoogle Scholar
  30. 30.
    D.M. Bibby, N.B. Milestone, and L.P. Aldridge, Nature (London) 280, 664 (1979).CrossRefGoogle Scholar
  31. 31.
    R.W. Grose and E.M. Flanigen, U.S. Patent 4,104,294 (1978).Google Scholar
  32. 32.
    D.A. Hickson, U.K. Patent Appl. GB 2, 079, 735A (1981).Google Scholar
  33. 33.
    T.V. Whittam, Eur. Patent A0059059 (1982).Google Scholar
  34. 34.
    S.A.I. Barri, H. Phillip, and C.D. Telford, Eur. Patent A0057049 (1982).Google Scholar
  35. 35.
    P.J. Hogan, A. Stewart, and T.V. Whittam, Eur. Patent A0065400 (1982).Google Scholar
  36. 36.
    Idemitsu Kosan Co., Japan Pat. Appl. 154, 037 (1982).Google Scholar
  37. 37.
    L.M. Parker and D.M. Bibby, Zeolites 3, 8 (1983).CrossRefGoogle Scholar
  38. 38.
    K. Takatsu and N. Kawata, Eur. Patent A102497 (1984).Google Scholar
  39. 39.
    H. Gies, Z. Kristallogr. 167, 73 (1984).CrossRefGoogle Scholar
  40. 40.
    J.L. Casci, B.M. Lowe, and T.V. Whittam, U.K. Patent Appl. 2,077,709A (1981).Google Scholar
  41. 41.
    L. Marosci, M. Schwartzmann, and J. Stabenow, Eur. Patent A0046504 (1982).Google Scholar
  42. 42.
    A. Araya and B.M. Lowe, J. Catal. 85, 134 (1984).CrossRefGoogle Scholar
  43. 43.
    R.M. Barrer, Hydrothermal Chemistry of Zeolites, p. 212, Academic Press, London (1982).Google Scholar
  44. 44.
    H. de St. Claire Deville, C.R. Séances Acad. Sci. 54, 324 (1862).Google Scholar
  45. 45.
    P. Niggli and G.W. Morey, Z. Anorg Allg. Chem. 83, 369 (1913).Google Scholar
  46. 46.
    G.W. Morey and E. Ingerson, Econ. Geol. 32, 607 (1937).CrossRefGoogle Scholar
  47. 47.
    R.M. Barrer, J. Soc. Chem. Ind. 64, 130 (1945).Google Scholar
  48. 48.
    R.M. Barrer and L. Belchetz, J. Soc. Chem. Ind. 64, 131 (1945).Google Scholar
  49. 49.
    R.M. Barrer, J. Soc. Chem. Ind. 64, 133 (1945).Google Scholar
  50. 50.
    R.M. Barrer, Brit. Chem. Eng. May Issue, p. 1 (1959).Google Scholar
  51. 51.
    D.W. Breck and E.M. Flanigen, in Molecular Sieves, (Soc. Chem. Ind.), p. 47 (1968).Google Scholar
  52. 52.
    Ref. 43, p. 262.Google Scholar
  53. 53.
    C. Baerlocker and W.M. Meier, Helv. Chim. Acta 52, 1853 (1969).CrossRefGoogle Scholar
  54. 54.
    D.M. Bibby and M.R. Dale, Nature (London) 317, 157 (1985).CrossRefGoogle Scholar
  55. 55.
    H. Gies, H. Gerke, and F. Liebau, Neues Jahrb. Mineral Monatsh. 3, 119 (1982).Google Scholar
  56. 55a.
    H. Gerke and H. Gies, Z. Kristallogr. 166, 11 (1984).Google Scholar
  57. 56.
    F. Liebau, personal communication.Google Scholar
  58. 57.
    H. Gies, Z. Kristallogr. 175, 93 (1986).CrossRefGoogle Scholar
  59. 58.
    Ref. 43, p. 253.Google Scholar
  60. 59.
    R.M. Barrer, J. Phys. Chem. Solids 16, 84 (1960).CrossRefGoogle Scholar
  61. 60.
    R.M. Barrer, Philos. Trans. R. Soc. London A311, 333 (1984).CrossRefGoogle Scholar
  62. 61.
    R.M. Barrer, in Zeolites, Synthesis, Structure, Technology and Application, (Eds. B. Drzaj, S. Hocevar, and S. Pejovnik), p. 1, Elsevier (1985).Google Scholar
  63. 62.
    B.M. Lok, T.R. Cannan, and C.A. Messina, Zeolites 3, 282 (1983).CrossRefGoogle Scholar
  64. 63.
    H. Gies, Nachr. Chem. Tech. Lab. 33, 387 (1985).CrossRefGoogle Scholar
  65. 64.
    Ref. 43, pp. 157–170.Google Scholar
  66. 65.
    Y. Marcus, J. Chem. Soc., Faraday Trans. 1 82, 1 (1986).Google Scholar
  67. 66.
    L.D. Rollmann, Adv. Chem. Ser. 173, 387 (1979).CrossRefGoogle Scholar
  68. 67.
    R.M. Barrer, J.F. Cole, and H. Sticher, J. Chem. Soc. A, 2475 (1968).Google Scholar
  69. 68.
    R.M.Barrer and J.F. Cole, J. Chem. Soc. A, 1516 (1970).Google Scholar
  70. 69.
    D. Dominé and J. Quobex, in Molecular Sieves, (Soc. Chem. Ind.), p. 78 (1968).Google Scholar
  71. 70.
    Ref. 43, pp. 133–137.Google Scholar
  72. 71.
    H. Kacirek and H. Lechert, J. Phys. Chem. 79, 1589 (1975); and 80, 1291 (1976).CrossRefGoogle Scholar
  73. 72.
    S.P. Zdhanov and N.N. Samulevich, Proc. 5th Int. Conf. Zeolites (Ed. L.V.C. Rees), p. 75, Heyden (1980).Google Scholar
  74. 73.
    R.M. Barrer, R. Beaumont, and C. Colella, J. Chem. Soc., Dalton Trans., 934 (1974).Google Scholar
  75. 74.
    R.M. Barrer and D.E. Mainwaring, J. Chem. Soc., Dalton Trans., 1254 (1972).Google Scholar
  76. 75.
    Ref. 43, pp. 106–119.Google Scholar
  77. 76.
    Ref. 43, Chap. 6.Google Scholar
  78. 77.
    Ref. 43, p. 294.Google Scholar
  79. 78.
    S.T. Wilson, B.M. Lok, and E.M. Flanigen, U.S. Patent 4,310,400 (1982).Google Scholar
  80. 79.
    B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, and E.M. Flanigen, J. Am. Chem. Soc. 106, 6092 (1984).CrossRefGoogle Scholar
  81. 80.
    N.J. Tapp, N.B. Milestone, and L.J. Wright, J.Chem. Soc., Chem. Commun., 1801 (1985).Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  1. 1.Chemistry DepartmentImperial College of Science and TechnologySouth Kensington, LondonUK

Personalised recommendations