Distribution Of Planetary Systems

  • T. V. Ruzmaikina
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 144)


Planets are formed in the gas-dust protoplanetary disc surrounding the solar type star at early stage of its evolution. The star and disc originate as a result of collapse of a cloud which angular momentum J is small enough to form a star-like core of minimal mass in the center of the cloud. However, the angular momentum must exceed the maximal angular momentum admissible for the formation of a single star. This puts the following limits on the cloud’s angular momentum:
$$10^{51} \leqslant \text{J} \leqslant 210^{51} \text{ g cm}^2 \text{ s}^{ - 1}$$
The ability of planetary systems depends on the number of protostellar clouds having the angular momenta within this interval. The rotation of dark cores in the clouds comes from the interstellar turbulence. The turbulence is intermittent over the scales less than O.lpc. The study of observational data on the rotation of the dark cores in molecular clouds shows that a fraction from 10−4 up to ≥ O.l of all clouds have the appropriate angular momenta. Thus, a fraction of stars having the planetary systems can amount to o.l of all stars of solar mass in the Galaxy.


Angular Momentum Molecular Cloud Planetary System Solar Nebula Solar Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abt, H.A.1978.’The binary frequency along the main sequence’ In Protostars and Planets, ed.T. Gehrels (Tucson: Univ.of Arisona Press), pp.323–340.Google Scholar
  2. Aumann, H. H., Gillett, F.C., Beichman, C.A., de Jong, T., Houck, J.R., Low, F., Neugebauer, G., Walker, R.G., and Wesselius, P.1984. ‘Discovery of a shellaround Alpha Lyrae.’ Astrophys. J. 278;L23–27.ADSCrossRefGoogle Scholar
  3. Beckwith, S., Zuckerman, B., Skrutskie, M.F., andDyck, H.M. 1984. ‘Discovery of solar system-size halos around young stars. Astrophys. J. 278:793–800.ADSCrossRefGoogle Scholar
  4. Hoyle, F. 1960.‘On the origin of the solar system’. Quart. J. Roy. Astron. Soc. 1 28–55.MathSciNetADSGoogle Scholar
  5. Cassen, P., and Moosman, A.1981. ‘On the formation of protostellar disks.’ Icarus 48:353–376.ADSCrossRefGoogle Scholar
  6. Cassen, P.M., and Summers, A.L. 1983.‘Models of the formation of the solar nebula’ Icarus 53:26–40.ADSCrossRefGoogle Scholar
  7. Krajcheva, Z.T., Popova, E.T., Tuiukov, A.V. and Jungelson, L.E. 1978.‘Some propeties of specroscopic binary stars’. Astron. J.(SSSR) 55, 1176–1189.ADSGoogle Scholar
  8. Larson, R.B.1969 ‘Numerical calculations of the dynamics of a collapsing protostar.’ Mon. Not. Roy. Astron. Soc. 145;271–295.ADSGoogle Scholar
  9. Larson, R.B.1981. ‘Turbulence and star formation in molecular clouds.’ Mon. Not. Roy. Astron. Soc. l19 194:809–826.ADSGoogle Scholar
  10. Lynden-Bell, D., and Pringle, J.E. 1974.‘The evolution of viscous disks and the origin of nebular variables,’ Mon. Not. Roy. Astron. Soc. 168:603–637.ADSGoogle Scholar
  11. Myers, P.C.1983.‘Dense cores in dark clouds. III. Subsonic turbulence. Astrophys. J. 270:105–11’.ADSCrossRefGoogle Scholar
  12. Myers, P., and Benson, P.J. 1983. Dense cores in dark clouds. II. NH3 observations and star formation. Astrophys. J. 239:309–329.ADSCrossRefGoogle Scholar
  13. Ostriker, J.P., and Bodenheimer, P. 1973 ‘On the oscillations and stability of rapidly rotating stellar models. III. Zero — viscosity polytropic sequences’ Astrophys. J. 180:171–180.ADSCrossRefGoogle Scholar
  14. Regev, O., and Shaviv, G.1981.‘Formation of protostars in collapsing, rotating, turbulent clouds’ Astrophys. J. 245:934–959ADSCrossRefGoogle Scholar
  15. Ruzmaikina, T.V. 1980.‘0n the role of the magnetic field and turbulence in the evolution of the presolar nebula.’ 23rd COSPAR Meeting, Budapest. June 1980. Adv.Space Res. 1981, 1:49–53.Google Scholar
  16. Ruzmaikina, T.V. 1981. Angular momentum of protostars giving the birth to preplanetary discs.’ Pisma Astron. J. (USSR) 7:188–192.ADSGoogle Scholar
  17. Ruzmaikina, T.V. 1982. In Diskussion forum‘Ursprung des Sonnensystems’, ed.H.Völk. Mitt. Astron. Ges. 57:49–54.Google Scholar
  18. Ruzmaikina, T.V. 1985. ‘Magnetic field in the collapsing presolar nebula.’Astron. Vestnik (USSR) 18:101–112.ADSGoogle Scholar
  19. Ruzmaikina, T.V. 1986. Origin of the angular momentum of the presolar Nebula.’ Astron. Zirkulyar 1439 1–3.ADSGoogle Scholar
  20. Ruzmaikina, T.V., and Maeva S.V. 1906.‘Investigation of the formation of the solar nebula.’ Astron. Vestnik (USSR) 19:212–227.Google Scholar
  21. Safronov, V.S. 1969. Evolution of the protoplanetary cloud and the formation of the Earth and planets (Moscow: Nauka Press).Google Scholar
  22. Safronov, V.S., and Vitjazev 1985.‘Origin of the solar system.’ In Astrgphvssics and Spaçe physics:(Śoviet Scientific Reviews), ed. R.A.Sunjaev.Google Scholar
  23. Weidenschilling, S.J. 1977.‘The distribution of mass in the planetary system and solar nebula ’Astrophvs. Space Sci. 51:153–158.ADSCrossRefGoogle Scholar
  24. Zachozhay V.A., and Ruzmaikina T.V. 1986.‘Stars to search for the Planetary Systems’ Astron. Vestnik (USSR), 19.No.2.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • T. V. Ruzmaikina
    • 1
  1. 1.Academy of SciencesSmidt Institute of the Physics of EarthMoscowUSSR

Personalised recommendations