Europa: The Prospects for an Ocean

  • R. T. Reynolds
  • C. P. McKay
  • J. F. Kasting
  • S. W. Squires
Part of the Astrophysics and Space Science Library book series (ASSL, volume 144)


Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain a liquid water ocean below a thin ice layer. In our own solar system, Europa, one of the Galilean satellites of Jupiter, may have such an ocean. Both theoretical calculations and certain observations support its existence, although proof is lacking. The putative ocean would probably have temperatures, pressures, and chemistry conducive to biologic activity. However, the environment would be severely energy limited. Possible energy sources include transient transmission of sunlight through fractures in the ice and hydrothermal activity on the ocean floor. While temporary conditions could exist that are within the range of adaptation of certain terrestrial organisms, origin of life under such conditions seems unlikely. In other solar systems, however, larger satellites with more significant heat flow could provide environments that are stable over an order of aeons and in which life could perhaps evolve.


Solar System Giant Planet Habitable Zone Galilean Satellite Outer Solar System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang, S., Occurrence of life in the universe, American Scientist 47, 397–402 (1959).Google Scholar
  2. 2.
    Hart, M.H., Habitable zones about main sequence stars, Icarus 37, 519–528 (1979).CrossRefGoogle Scholar
  3. 3.
    Cassen, P.M., S.J. Peale, and R.T. Reynolds, Structure and thermal evolution of the Galilean satellites, The satellites of Jupiter (D. Morrison, Ed.) U. of Arizona Press, 93–128 (1982).Google Scholar
  4. 4.
    Peale, S.J. and P.M. Cassen, Contribution of tidal dissipation to lunar thermal history, Icarus 36, 245–269 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    Squyres, S.W., R.T. Reynolds, P.M. Cassen, and S.J. Peale, The evolution of Enceladus, Icarus 53, 319–331 (1983b).ADSCrossRefGoogle Scholar
  6. 6.
    Squyres, S.W., R.T. Reynolds, and J.J. Lissauer, The enigma of the Uranian satellites orbital eccentricity, Icarus 61, 218–223 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    Smith, B.A., L.A. Soderblom, R. Beebe, D. Bliss, J.M. Boyce, A. Brahic, G.A. Briggs, R.H. Brown, S.A. Collins, A.F. Cook II, S.K. Croft, J.N. Cuzzi, G.E. Danielson, M.E. Davies, T.E. Dowling, D. Godfrey, C.J. Hansen, C. Harris, G.E. Hunt, A.P. Ingersoll, T.V. Johnson, R.J. Krauss, H. Masursky, D. Morrison, T. Owen, J.B. Plescia, J.B. Pollack, C.C. Porco, K. Rages, C. Sagan, E.M. Shoemaker, L.A. Sromovsky, C. Stoker, R.G. Strom, V.E. Suomi, S.P. Synnott, R.J. Terrile, P. Thomas, W.R. Thompson, and J. Veverka, Voyager 2 in the Uranian System: Imaging Science Results, Science 233, 43–64 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    Lewis, J.S., Low temperature condensation from the solar nebula, Icarus 16, 241–252 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    Pilcher, C.B., Ridgway, S.T., and McCord, T.B., Galilean satellites: Identification of water frost, Science 178, 1087–1089 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    Pollack, J.B., Witteborn, F.C., Erickson, E.F., Strecker, D.W., Baldwin, B.J., and Bunch, T.E., Near-infrared spectra of the Galilean satellites: Observations and compositional implications, Icarus 36, 271–303 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    Clark, R.N., Ganymede, Europa, Callisto, and Saturn’s rings: Compositional analysis from reflectance spectroscopy. Icarus 44, 388–409 (1980).ADSCrossRefGoogle Scholar
  12. 12.
    Clark, R.N., and McCord, T.B., The Galilean satellites: New near-infrared reflectance measurements (0.65–2.5 µm) and a 0.325–5 µm summary, Icarus 41, 323–339 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    Ransford, G.A., Finnerty, A.A., and Collerson, K.D., Europa’s penological thermal history, Nature 289, 21–24 (1981).ADSCrossRefGoogle Scholar
  14. 14.
    Cassen, P.M., S.J. Peale, and R.T. Reynolds, Tidal dissipation in Europa: A correction, Geophys. Res. Lett. 7, 987–988 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    Squyres, S.W., R.T. Reynolds, P.M. Cassen, and S.J. Peale, Liquid water and active resurfacing on Europa, Nature 301, 225–226 (1983a).ADSCrossRefGoogle Scholar
  16. 16.
    Thomas, P.J., and Schubert, G., Crater relaxation as a probe of Europa’s interior, J. Geophys. Res. 91, D453-D459 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    Ross, M.N., and Schubert, G., Tidal heating in an internal ocean model of Europa, Nature 325, 133–134 (1987).ADSCrossRefGoogle Scholar
  18. 18.
    Ojakangas, G.W., and Stevenson, D.J., in preparation.Google Scholar
  19. 19.
    Buratti, B., and J. Veverka, Voyager photometry of Europa, Icarus 55, 93–110 (1983).ADSCrossRefGoogle Scholar
  20. 20.
    Eviatar, A., A. Bar-Nun, and M. Podolak, Europan surface phenomena, Icarus 61, 185–191 (1985).ADSCrossRefGoogle Scholar
  21. 21.
    Reynolds, R.T., S.W. Squyres, D.S. Colbum, and C.P. McKay, On the habitability of Europa, Icarus 56, 246–254 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, T.H., Submarine thermal springs on the Galapagos Rift, Science 203, 1073–1083 (1979).ADSCrossRefGoogle Scholar
  23. 23.
    Jannasch, H.W., and Wirsen, C.O., Chemosynthetic primary production at East Pacific sea floor spreading centers, Bioscience 29, 592–598 (1979).CrossRefGoogle Scholar
  24. 24.
    Sullivan, C.W., and A.C. Palmisano, Sea-ice microbial communities in McMurdo Sound, Antarctic J. U.S. 16(5), 126–127 (1981).Google Scholar
  25. 25.
    Anita, N.J., Effects of temperature on the darkness survival of marine microplanktonic algae, Microb. Ecol. 3, 41–54 (1976).CrossRefGoogle Scholar
  26. 26.
    Kasting, J.F., J.B. Pollack, and T.P. Ackerman, Response of Earth’s atmosphere to increases in solar flux and implications for loss of water from Venus, Icarus 57, 335–355 (1984a).ADSCrossRefGoogle Scholar
  27. 27.
    Kasting, J.F., J.B. Pollack, and D. Crisp, Effects of high C02 levels on surface temperature and atmospheric oxidation state of the early Earth, J. Atmos. Chem. 1, 403–428 (1984b).CrossRefGoogle Scholar
  28. 28.
    Kasting, J.F., and T.P. Ackerman, Climatic consequences of very high C02 levels in Earth’s early atmosphere, Science submitted (1986).Google Scholar
  29. 29.
    McKay, C.P. and J.B. Pollack, Radiactive-convective model of Titan’s atmosphere, Bull. Amer. Astro. Soc., 17, 739–740 (1986).ADSGoogle Scholar
  30. 30.
    Parker, B.C., G.M. Simmons, Jr., K.G. Seaburg, D.D. Cathey, and F.T.C. Allnutt, Comparative ecology of plankton communities in seven Antarctic oasis lakes, J. Plank. Res. 4, 271–286 (1982).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • R. T. Reynolds
    • 1
  • C. P. McKay
    • 1
  • J. F. Kasting
    • 1
  • S. W. Squires
    • 2
  1. 1.NASA Ames Research CenterMoffett FieldUSA
  2. 2.Radiophysics and Space ResearchCornell UniversityIthacaUSA

Personalised recommendations