Advertisement

Hydrothermal Energy Flow of Planetary Bodies and the Creation of Living Systems

  • J. B. Corliss
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 144)

Abstract

An understanding of the events leading to life on Earth, presently our one observable example of the process, will provide insight into the possibilities of life elsewhere in the Universe. Life on planet Earth is here characterized as an attractor emerging within the natural hierarchy of dissipative systems which transfer heat from the planetary interior. The key elements in this hierarchy, the submarine hot springs, are examples of the entropy bursts which punctuate the evolution of the universe and lead to the creation of organized structures and systems. The phase space trajectories which the fluid components are constrained by history to follow in these powerful and potent flow reactors can lead to the assembly of complex organic molecules and organized structures which are thermodynamically and kinetically inaccessible to near equilibrium systems or unconstrained chaotic dissipative systems. This model implies the possibility that life can emerge and be sustained in parts of planetary systems where the flow of solar radiation is negligible, such as the Galilean satellites of Jupiter where tidal heating produces significant heat flow.

Keywords

Flow Reactor Planetary System Dissipative System Primitive Cell Planetary Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corliss J. B., J. Baross, and S.E. Hoffman(1981)Proc. 26th International Geological Congress, Paris, 1980, Oceanol. Acta: Special Issue, p. 59–69.Google Scholar
  2. Deamer, D. W. (1986). Origins of Life, 16.Google Scholar
  3. Eigen, M (1971)Naturwiss. 58, 465.ADSCrossRefGoogle Scholar
  4. Feistel, R. (1983)Studia Biophys. 93, 113.Google Scholar
  5. Horai, K and Uyeda, S, (1969). In: Hart, P. J.) The Earth’s Crust and Upper Mantle. Geophys. Monogr. Ser., Vol. 13, Amer. Geophys. Un., Washington, D. C.Google Scholar
  6. Jenkins, W J, J. M. Edmond, and J. B. Corliss (1978) Nature, 272, 156.ADSCrossRefGoogle Scholar
  7. Knoll, A. H. and Barghoorn, E. S. (1977) Science, 198, 396.ADSCrossRefGoogle Scholar
  8. Lister, C R B. (1974) Geophys. J. R. Astron. Soc. 39, 465.Google Scholar
  9. Margulis, L. (1981) Symbiosisin Cell Evolution. W. H. Freeman, San Francisco.Google Scholar
  10. Marx. G. (1984). Proc. Genl. Assem. European Phys. Soc. August, 1984, PragueGoogle Scholar
  11. Miller, S. L. (1953), Science, 117, 528.ADSCrossRefGoogle Scholar
  12. Morowitz, H. (1968) Energy flow in Biology. Ox Bow Press, Woodbridge, Connecticut.Google Scholar
  13. Nicolis, G, and L Prigogine (1977) Self-organization in equilibrium Systems. Wiley.Google Scholar
  14. Nicolis, J S. (1986) Dynamics of Hierarchical Systems: An Evolutionary Approach. Springer.zbMATHGoogle Scholar
  15. Nisbet, E. G. (1985). J. Mol, Evol. 21, 289.CrossRefGoogle Scholar
  16. Nisbet E. G (1984). Can. J. Earth Sci. 21, 1426.ADSCrossRefGoogle Scholar
  17. Prigogine, I. (1955) Introductiontothhermodynamicsof Irreversible Processes. Wiley.Google Scholar
  18. Sclater, J. G, B. Parsons and C. Jaupert (1981), J. Geophys. Res. 86B 11, 535.ADSCrossRefGoogle Scholar
  19. Smith, J. V. (1981). Phil. Trans. R. Soc. Lond. A301, 401ADSCrossRefGoogle Scholar
  20. Taylor S R. (1979), In: McElhinny M. W. (ed), The Earth, Academic Press.Google Scholar
  21. Turing, A. (1952) Phil. Trans. Roy. Soc. London, 237B, 37.ADSGoogle Scholar
  22. VonDamm, K L., B. Grant and J. M. Edmond (1983) In: Rona, P A, etal. (eds.)Hvdrothermal processes at sea floor spreading centers. NATO Conf. Series, Ser. IV: Mar. Sci. Vol 12. Plenum.Google Scholar
  23. Welhan, J. A. and H. Craig (1983) In: Rona, P. A., et al., previous citation.Google Scholar
  24. Wicken, J. S. (1987) Evolution. Information. anhermodynamics. Oxford.Google Scholar
  25. Woese. C R. (1987) Microbiol. Rev., 51, 221–271.Google Scholar
  26. Yockey, II. (1977) J. Theor. Biol. 67, 377–398.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • J. B. Corliss
    • 1
    • 2
  1. 1.Department of Atomic PhysicsEötvös UniversityBudapestHungary
  2. 2.Department of ChemistryGeorgetown UniversityWashingtonUSA

Personalised recommendations