Skip to main content

Power Spectrum and Fredholm Determinant Related to Intermittent Chaos

  • Chapter
Stochastic Processes in Physics and Engineering

Part of the book series: Mathematics and Its Applications ((MAIA,volume 42))

Abstract

We present a mathematical aspect to the problem of intermittent chaos. The singularity of power spectra, such as l/ω-spectrum, is shown for a class of correlation functions under the dynamics called semi-Bernoulli systems and is also proved to be common among this class. The singularity is described by a power series called the Fredholm determinant, which may be regarded as det(I-zL) for the transfer operator L although L has a strange spectral property: every complex number in the open unit disk is an eigenvalue. Finally examples are given among maps of intervals and among statistical mechanics of one dimensional lattice models to conclude that the l/ω-spectrum is a critical phenomenon at the tri-critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afraimovic, V.S., Bykov, V.V. and Sil’nikov, L.P., Attracting non-rough limiting sets of Lorenz attractor type, Trudy Moskov. Obsc. 44(1982), 150–212.

    Google Scholar 

  2. Afraimovic, V.S. and Shil’nikov, L.P., Strange attractors and quasi-strange attractors, Nonlinear dynamics and Turbulence, ed.Barenblatt et al., Pitman (1984), 1–34.

    Google Scholar 

  3. Aizawa, Y. and Kohyama, T., Symbolic dynamics approach to intermittent chaos-towards the comprehension of large scale self-similarity and asymptotic non-stataionarity. Chaos and Statistical Methods ed. Kuramoto, Springer (1984), 109–116.

    Google Scholar 

  4. Cornfeld, I.P., Sinai, Ya. G. and Fomin, S.V., Ergodic Theory, Nauka (1980); English translation, Springer (1981).

    MATH  Google Scholar 

  5. Donsker, M.D. and Varadhan, S.R.S., Aysmptotic evaluation of certain Markov process expectations for large time I, III, IV, Comm. Pure Appl. Math. 28(1975), 1–45; 29(1976), 389–461; 36(1983), 183–212.

    Article  MathSciNet  MATH  Google Scholar 

  6. Varadhan, S.R.S., Large Deviation and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics 46, Soc. Industrial and Applied Math. (1984).

    Google Scholar 

  7. Feigenbaum, M., Quantitative universality for a class of nonlinear transformations, J. Stat. Phys. 19(1978), 25–52; The universal metric properties of nonlinear transformations, J. Stat. Phys. 21(1979), 669–706.

    Article  MathSciNet  MATH  Google Scholar 

  8. Feller, W., An Introduction to Probability Theory and its Applications, Wiley (1950).

    MATH  Google Scholar 

  9. Hardy, G.H. and Riesz, M., The General Theory of Dirichlet Series, Cambridge Tracts in Math. and Phys, No.18, Stecher-Hafner (1964) [originally, Cambridge Univ. Press (1915)].

    Google Scholar 

  10. Gollub, J.P. and Swinney, H.L., Onset of turbulence in a rotating fluid, Phys. Rev. Lett. 35(1975), 927–930.

    Article  Google Scholar 

  11. Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer (1983).

    MATH  Google Scholar 

  12. Hofbauer, F. and Keller, G., Zeta functions and transfer operators for piecewise linear transformations J.f.reine u. angewandte Math. 352(1984), 101–113.

    MathSciNet  Google Scholar 

  13. Levy, P., Oeuvres Vol.IV, Gauthier-Villars (1980).

    MATH  Google Scholar 

  14. Li, T. and Yorke, J., Period three implies chaos, Amer. Math. Monthly 82(1975), 985–992.

    Article  MathSciNet  MATH  Google Scholar 

  15. Libchaber, A. and Maurer, J., A Rayleigh-Bernard experiment: helium in a small box. Nonlinear Phenomena at Phase Transitions and Instabilities, ed. Riste (1982), 259–286.

    Google Scholar 

  16. Lorenz, E.N., Deterministic nonperiodic flow, J. Atmos. Sci. 20(1963), 130–141.

    Article  Google Scholar 

  17. May, R., Biological populations obeying difference equations, stable cycles and chaos, J. Theor. Biol. 51.(1975), 511–524.

    Article  Google Scholar 

  18. Mori, H., Evolution of chaos and power spectra in one-dimensional maps, Nonlinear Phenomenon in Chemical Dynamics, Springer (1981).

    Google Scholar 

  19. Mori, H., So, B.C. and Okamoto, H., Spectral structure and universality of intermittent chaos, Proc. Nobel Symp. on the Physics of Chaos and Related Problems.

    Google Scholar 

  20. Oono, Y. and Takahashi, Y., Chaos, external noise and Fredholm theory, Prog. Theor. Phys. 63(1980), 1804–1807.

    Article  MathSciNet  MATH  Google Scholar 

  21. Takahashi, Y. and Oono, Y., Towards statistical mechanics of chaos, Prog. Theor. Phys. 71(1984), 851–854.

    Article  MathSciNet  MATH  Google Scholar 

  22. Pomeau, Y. and Manneville, P., Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys. 74(1980), 189–197.

    Article  MathSciNet  Google Scholar 

  23. Rossler, C.E., An equation for continuous chaos, Phys. Lett. 57A(1976), 397–398.

    Google Scholar 

  24. Ruelle, S., Statistical Mechanics. Rigorous Results, Benjamin (1969).

    Google Scholar 

  25. Ruelle, D., Thermodynamical Formalism, Addison-Wesley (1978).

    Google Scholar 

  26. Ruelle, D. and Takens, F., On the nature of turbulence, Comm. Math. Phys. 20(1971), 167–192; 23(1971), 343–344.

    Article  MathSciNet  MATH  Google Scholar 

  27. Sarkovskii, Coexistence of cycles of a continuous map of a real line to itself, Ukrain. Mat. Z. 16(1964), 61–71.

    MathSciNet  Google Scholar 

  28. Stefan, P., A theorem of Sarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54(1977), 237–248.

    Article  MathSciNet  MATH  Google Scholar 

  29. Sil’nikov, L.P., A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle-focus type, Mat. Sbornik 10(1970), 91–102.

    Article  MathSciNet  Google Scholar 

  30. Sinai, Y., G., Theory of Phase Transition, Nauka (1980).

    Google Scholar 

  31. Takahashi, Y., Fredholm determinant of unimodal linear maps, Sci. Papers College Gen. Educ. Univ. Tokyo 31(1981), 61–87

    MATH  Google Scholar 

  32. Takahashi, Y., An ergodic-theoretical approach to the chaotic behaviour of dynamical systems, Publ. RIMS Kyoto Univ. 19(1983), 1265–1282.

    Article  MATH  Google Scholar 

  33. Takahashi, Y., Entropy functional (free energy) for dynamical systems and their random perturbations, Proc. Taniguchi Symp. on Stochastic Analysis, Kinokuniya/North-Holland (1984), 437–467.

    Chapter  Google Scholar 

  34. Takahashi, Y., Observable chaos and variational principle formalism, for one-dimensional maps, Proc. 4th Japan-USSR Symp. on Probability Theory, Springer Lecture Notes in Math. Vol.1021 (1983), 676–686.

    Google Scholar 

  35. Takahashi, Y., Gibbs variational principle and Fredholm theory for one-dimensional maps. Chaos and Statistical Methods, ed. Kuramoto, Springer (1984), 14–22

    Google Scholar 

  36. Takahashi, Y., Phase transition which exhibits 1/f-spactrum: a rigorous result. Statistical Plasma Physics, Proc. US-Japan Workshop, Research Report IPP Nagoya, July 1984, 96–103.

    Google Scholar 

  37. Takahashi, Y., One dimensional maps and power spectrum, Recent Studies on TURBULENT PHENOMENA, 1985 ed. by T. Tatsumi et al., pp.99–116, Association for Science Documents Information, Tokyo 1985.

    Google Scholar 

  38. Totoki, H., Introduction to Ergodic Theory, Kyoritsu (1971) (in Japanese).

    Google Scholar 

  39. Ueda, Y., New Approach to Nonlinear Problems in Dynamics, ed. Holmes, SIAM (1980), 311–

    Google Scholar 

  40. Ueda, Y.,Explosion of strange attractors exhibited by Duffing equation. Nonlinear Dynamics, ed. Helleman, New York Acad. Sci. (1981), 422–434.

    Google Scholar 

  41. Zygmund, A., Trigonometric Series, Cambridge Univ. Press (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company

About this chapter

Cite this chapter

Takahashi, Y. (1988). Power Spectrum and Fredholm Determinant Related to Intermittent Chaos. In: Albeverio, S., Blanchard, P., Hazewinkel, M., Streit, L. (eds) Stochastic Processes in Physics and Engineering. Mathematics and Its Applications, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2893-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2893-0_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7803-0

  • Online ISBN: 978-94-009-2893-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics