Skip to main content

On Asymptotic Localization by Perturbing Operators for Partial Observation of a Stochastic Evolution Equation

  • Chapter
Stochastic Processes in Physics and Engineering

Part of the book series: Mathematics and Its Applications ((MAIA,volume 42))

  • 450 Accesses

Abstract

This paper considers some bounds for the Hellinger distance in spaces of probability measures induced by partial observations of a stochastic evolution equation using some results of F. Liese [18], [19] and a technique developed in [15]. The basic aim of the reported work is to discover those perturbations of the infinite dimensional system generator that will lead to calculations of Hellinger balls. The main result here is an asymptotic localization property, in terms of the variation distance (see [25]), derived under some fairly restrictive assumptions on a perturbing operator as the observation interval increases to infinity. A prerequisite for this is a study of the perturbation properties of the covariance operator of the filtering error under stability and stationarity assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.G. Akritas: Contiguity of probability measures associated with continuous time stochastic-processes. Ph.D.-Thesis in Statistics. University of Wisconsin-Madison 1978.

    Google Scholar 

  2. A. Bagchi &V. Borkar: Tarameter Identification in Infinite-Dimensional Linear Systems’. Stochastics 1984 Vol. 12 pp. 201–213.

    Article  MathSciNet  MATH  Google Scholar 

  3. R.J. Curtain: ’Spectral systems’. International Journal of Control 1984, Vol. 39 pp. 657–665.

    Article  MathSciNet  MATH  Google Scholar 

  4. R.J. Curtain & ,A.J. Pritchard: Infinite Dimensional Linear System Theory. Springer New York 1978.

    Book  Google Scholar 

  5. D. Dacunha-Castelle: ’Vitesse de Convergence pour Certaines Problemes Statistique’ in Ecole d’Eté de Probabilites de Saint Flour VII-1977: Lecture Notes in Mathematics Nr. 678 Springer Verlag Berlin 1970.

    Google Scholar 

  6. R.M. Datko: ’Extending a Theorem of A.M. Lyapunov to Hilbert Space’. Journal of Mathematical Analysis and Applications 1970 Vol. 32, pp. 610–616.

    Article  MathSciNet  MATH  Google Scholar 

  7. K.B. Datta: ’Series solution of matrix Riccati equation’. International Journal of Control 1978 Vol. 27, pp. 463–472.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Doob: Stochastic Processes. John Wiley &Sons, New York 1973.

    Google Scholar 

  9. J.S. Gibson: ’The Riccati Equations for Optimal Control Problems in Hilbert Space’. SIAM J. on Control and Optimization 1979, Vol. 17, pp. 537–565.

    Article  MathSciNet  MATH  Google Scholar 

  10. U. Grenander: Abstract Inference. John Wiley &Sons New York 1983.

    Google Scholar 

  11. G.S. Jones: ’Fundamental inequalities for discrete and discontinuous functional equations’. Journal of SIAM 1964 Vol. 12, pp. 43–57.

    MATH  Google Scholar 

  12. T. Kailath: ’The Divergence and Bhattacharyya Distance Measures in Signal Selection’. IEEE Transactions on Communication Technology 1967, Vol. COM-15, pp. 52–60.

    Article  Google Scholar 

  13. G. Kallianpur: Stochastic Filtering Theory. Springer Verlag New York 1981.

    Google Scholar 

  14. T. Koski: ’A note on the statistical identifiability of some stationary stochastic evolution equations’. Reports on computer science and mathematics Ser. A Nr. 35 Abo Academy 1984.

    Google Scholar 

  15. T. Koski: ’Local asymptotic normality for partial observations of a stochastic evolution equation’. TW-Memorandum Nr. 548 Twente University of Technology Enschede, The Netherlands 1986 (submitted for publication).

    Google Scholar 

  16. T. Koski &W. Loges: ’On measures of information for continuous time stochastic processes’. BiBos Research Reports Nr. 157, Bielefeld 1986 (submitted for publication in an enlarged version).

    Google Scholar 

  17. Yu.A. Kutoyants: Parameter Estimation for Stochastic Processes. Heldermann Verlag Berlin 1984.

    MATH  Google Scholar 

  18. F. Liese: ’Hellinger integrals of Diffusion Processes’. Friedrich Schiller Universität Jena Preprint Nr. 83/39 1983.

    Google Scholar 

  19. F. Liese: ’Chernoff Type Bounds of Errors in Hypothesis Testing of Diffusion Processes’ in D. Rasch & M.L. Tiku: Robustness of Statistical Methods and Nonparametric Statistics VEB Berlin 1984.

    Google Scholar 

  20. R.S. Liptzer &A.N. Shiryaev: Statistics of Random Processes Vol. I Springer Berlin 1977.

    Google Scholar 

  21. M. Métivier: Semimartingales. W. de Gruyter Berlin 1985.

    Google Scholar 

  22. M. Métivier & G. Pistone: ’Une formule d’isometrie pour l’intégrale stochastique hilbértienne et équations d’évolution linéaires stochastiques’. Z. Wahrscheinlichkeitstheorie verw. Geb. 1975 Vol. 33, pp. 1–18.

    Article  MATH  Google Scholar 

  23. E.J.G. Pitman: Some Basic Theory for Statistical Inference. Chapman and Hall London 1979.

    Google Scholar 

  24. W. Ray & D.G. Lainiotis (ed.): Distributed Parameter Control Systems. Marcel Dekker Inc, New York 1978.

    MATH  Google Scholar 

  25. H. Strasser: Mathematical Theory of Statistics. W. de Gruyter Berlin 1985.

    Book  MATH  Google Scholar 

  26. S.G. Tzafestas (ed.): Distributed Parameter Control Systems. Pergamon Press London 1982.

    MATH  Google Scholar 

  27. E. Valkeila: ‘A survey of some recent developments in Kullback-Leibler information for a stochastic basis’. (A communication in Finnish, University of Helsinki, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company

About this chapter

Cite this chapter

Koski, T. (1988). On Asymptotic Localization by Perturbing Operators for Partial Observation of a Stochastic Evolution Equation. In: Albeverio, S., Blanchard, P., Hazewinkel, M., Streit, L. (eds) Stochastic Processes in Physics and Engineering. Mathematics and Its Applications, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2893-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2893-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7803-0

  • Online ISBN: 978-94-009-2893-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics