Skip to main content

Solution of the Staccato Version of the Achilles Paradox

  • Chapter
  • 68 Accesses

Part of the book series: Nijhoff International Philosophy Series ((NIPS,volume 36))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. See Plato, Pannenides, 128 A.

    Google Scholar 

  2. Cf. Plato, Timaeus, 38 A and Aristotle, Physics, 221 b 3–7ff.

    Google Scholar 

  3. See DK 82 B 3.

    Google Scholar 

  4. Cf. G.W.F. Hegel, Vorlesungen über die Geschichte der Philosophie II (Werke 19), p. 62, Suhrkamp Verlag, Frankfurt am Main, 1971.

    Google Scholar 

  5. See F.H. Bradley, Appearance and Reality — A Metaphysical Essay, ch. XVIII, Clarendon Press, Oxford, 1966.

    Google Scholar 

  6. Ibid., p. 181.

    Google Scholar 

  7. See A.J. Ayer, Metaphysics and Common Sense, p. 66, MacMillan, 1969.

    Google Scholar 

  8. DK 29 B 1.

    Google Scholar 

  9. Cf. Aristotle, On Coming-To-Be and Passing-Away, 316 a 15ff.

    Google Scholar 

  10. See ibid., 325 a 31.

    Google Scholar 

  11. Epicurus, To Herodotus 58

    Google Scholar 

  12. Ibid., 59

    Google Scholar 

  13. Ibid., 56–57

    Google Scholar 

  14. Ibid., 61–62

    Google Scholar 

  15. Cf. P. Tannery, Pour l’histoire de la science Hellène, Paris, 1887. F. Evelin, ‘Le mouvement et les partisans des indivisibles’, Revue de metaphysique et morale 1,1893, G. Noël, ‘Le mouvement et les arguments de Zénon d’Elée’, Revue de métaphysique et morale 1, 1893. — I don’t think that this interpretation, followed by many scholars, is historically correct (see M. Arsenijević, Prostor, vreme, Zenon (Space, Time, Zeno), pp.91–92, Serbian Philosophical Society and Graphic Institute of Croatia, Belgrade-Zagreb, 1986), but, in any case, it can be used as an argument against geometric atomism.

    Google Scholar 

  16. I shall not discuss here Grunbaum’s interpretation, according to which all of the famous kinematic atomists, W. James, A.N. Whitehead, and P. Weiss, allegedly side the kinematic atomism of the former kind (cf. A. Grünbaum, ‘Relativity and the Atomicity of Becoming’, Review of Metaphysics 2, band 4, 1950 and Modern Science and Zeno’s Paradoxes, p. 48, George Allen and Unwin Ltd., London, 1968).

    Google Scholar 

  17. M. Black, Problems of Analysis, pp. 116–118, Cornell University Press, Ithaca, New York, 1954.

    Google Scholar 

  18. Berkeley was the first to claim that our faith in infinite divisibility has its origin in this extrapolation, based on the way in which the mathematicians proceed: whenever the geometer speaks of particular lines and figures, he ‘considers them abstracting from their magnitude’, which implies ‘that he cares not what the particular magnitude is, whether great or small, but looks on that as a thing indifferent to the demonstration’ (Berkeley, The Principles of Human Knowledge, §126, p. 154, George Routledge and Sons, London and New York, 1878). David Hilbert, a mathematician, was of the same opinion, and he tried to solve The Achilles on that basis (see D. Hilbert and P. Bernays, Grundlagen der Mathematik I, §1c2,p. 16, Springer Verlag, Berlin, Heidelberg, New York, 1968).

    Google Scholar 

  19. Infinitism is the religion of mathematicians. Among philosophers who used this strategy in trying to solve Zeno’s paradoxes the most influential are: B. Russell (see Our Knowledge of the External World, lectures VI, VII, The Open Court Publishing Company, Chicago and London, 1914), R. Taylor (see ‘Mr. Black on Temporal Paradoxes’, Analysis 12, 1951, and ‘Mr. Wisdom on Temporal Paradoxes’, Analysis 13, 1952), A. Grünbaum (see Modern Science and Zeno’s Paradoxes, ch.II, George Allen and Unwin Ltd., London, 1968), and W.C. Salmon (see Space, Time, and Motion, ch. II, Dickenson Publishing Co., Inc., Encino and Belmont, California, 1975).

    Google Scholar 

  20. J. Watling, ‘The Sum of an Infinite Series’, Analysis 13, 1952, p. 48.

    Article  Google Scholar 

  21. Cf. J.F. Thomson, ‘Tasks and Super-Tasks’, Analysis 15, 1954.

    Google Scholar 

  22. See M. Black, ‘Achilles and the Tortoise’, Analysis 11, 1951, p. 97.

    Article  Google Scholar 

  23. See above, n. 21.

    Google Scholar 

  24. P. Benacerraf, Tasks, Super-Tasks and Modern Eleatics’, The Journal of Philosophy vol. LIX 24.

    Google Scholar 

  25. A. Grünbaum, Modern Science and Zeno’s Paradoxes, pp. 94ff.

    Google Scholar 

  26. Ibid., p. 105.

    Google Scholar 

  27. Ibid., p. 100.

    Google Scholar 

  28. See ibid., p. 101.

    Google Scholar 

  29. Cf. A. Robinson, Non-Standard Analysis, pp. 55ff. and pp. 266–7, North-Holland Publishing Company, Amsterdam, 1970.

    Google Scholar 

  30. Cf. C.B. Boyer, The Concepts of the Calculus: A Critical and Historical Discussion of the Derivative and the Integral, ch. III, Dover Publications, New York and London, 1939.

    Google Scholar 

  31. The solution of The Achilles proposed by G.J. Whitrow in 1961 is in accordance with non-standard analysis, which came into being a few years later (cf. G.F. Whitrow, The Natural Philosophy of Time, p. 151, Thomas Nelson and Sons Ltd., 1961 and A. Robinson, Non-Standard Analysis, p. VIII and pp. 58ff.).

    Google Scholar 

  32. See P.T. Geach, Logic Matters, p. 238, Basil Blackwell, Oxford, 1972.

    Google Scholar 

  33. Ibid., loc. cit.

    Google Scholar 

  34. See M. Black, ‘Achilles and the Tortoise’, Analysis 11, 1951.

    Google Scholar 

  35. Cf. M. Black, ‘Achilles and the Tortoise’, Analysis 11, 1951ibid., pp. 100–101.

    Article  Google Scholar 

  36. Cf. D.S. Schwayder, ‘Achilles Unbound’, The Journal of Philosophy vol. LII 17, pp. 454ff.

    Google Scholar 

  37. M. Black, ‘Achilles and the Tortoise’, Analysis 11, 1951, p. 101.

    Article  Google Scholar 

  38. See Aristotle, Physics, 185 b10ff.

    Google Scholar 

  39. Cf. Aristotle, The Nicomachean Ethics, 1096 b 27, and Metaphysics, 1003 a 21.

    Google Scholar 

  40. Two parts are contiguously touching if they are physically heterogeneous or if they are not physically grown together. For Aristotle’s definition of contiguity see Physics, 227 a 6.

    Google Scholar 

  41. For Aristotle’s definition of continuity see Physics, 227 a 10. That the distinction between contiguous and continuous touchings can be inclusive see M. Arsenijevic, ‘Dodirivanje’ (Touching’), Filozofske studije (Philosophical Studies) VI, 1975.

    Google Scholar 

  42. See Aristotle, On Coming-to-Be and Passing-Away, 317 a 8ff.

    Google Scholar 

  43. See Aristotle, Physics, 231 b 15.

    Google Scholar 

  44. For the justification of my use of name indefinitism for the theory under consideration cf. G.W. Leibniz, ‘The Theory of Abstract Motion: Fundamental Principles’, Philosophical Papers and Letters, p. 139, D. Reidel Publishing Company, Dordrecht-Holland and Boston-U.S.A., 2nd edition, 2nd printing, 1976, and Kant, Kritik der reinen Vernunft (Werke III), pp. 351 ff., Druck und Verlag von Georg Reimer, Berlin, 1911.

    Google Scholar 

  45. Aristotle, Physics, 227 b 3.

    Google Scholar 

  46. Cf. ibid., 228 b 15ff.

    Google Scholar 

  47. In our century, H. Bergson proposed a solution to Zeno’s Arrow completely based on Aristotle’s analysis of the nature of the oneness of a motion (see H. Bergson, L’évolution créatrice, pp. 334ff., Librairie Felix Alcan, Paris, 1932).

    Google Scholar 

  48. See A.R. Anderson and N.D. Belnap, Jr., Entailment — The Logic of Relevance and Necessity, §§3, 4, Princeton University Press, Princeton and London, 1975.

    Google Scholar 

  49. Intensional conjuction was introduced by R.K. Meyer in ‘Some Problems No Longer Open for E and Related Ligics’, Journal of Symbolic Logic 35, 1970.

    Google Scholar 

  50. De facto, the term ‘relevant consistency’, used in relevant logics, and Nelson Goodman’s neologism ‘cotenability’ are being used synonymously (cf. A.R. Anderson and N.D. Belnap, Jr., op. cit., pp. 345–6).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Arsenijević, M. (1988). Solution of the Staccato Version of the Achilles Paradox. In: Pavković, A. (eds) Contemporary Yugoslav Philosophy: The Analytic Approach. Nijhoff International Philosophy Series, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2821-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2821-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7770-5

  • Online ISBN: 978-94-009-2821-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics