Skip to main content

Trusses and Frames

  • Chapter
  • 181 Accesses

Part of the book series: Mechanics of Elastic Stability ((MEST,volume 13))

Abstract

Trusses, i.e. systems of straight, pin-joined bars, may loose their stability in various ways, described in Chapter 1. In particular in plane trusses three kinds of bifurcation may occur (buckling of individual bars or groups of bars; in-plane loss of stability due to additional tension or compression but without buckling of individual bars; out-of-plane loss of stability resembling lateral buckling of high beams), and snap-through is also possible. Analysis of small vibrations imposed on the prebuckling state makes it possible to determine critical loading in any case; however, very often purely static considerations are sufficient. Geometrical non-linearity of the prebuckling state is in most cases essential. Matrix notation is particularly convenient here and the finite element method leads, as a rule, to exact results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov, N.I., Problems of optimal design of physically nonlinear hyperstatic systems (in Russian), Stroit. Mekh. Raschet Sooruzh. (1971), 4, 57–60.

    Google Scholar 

  2. Akhmadalev, M., Computer analysis of minimal weight hyperstatic trusses by the method of successive approximation (in Russian), Izv. AN. UzbSSR, Ser. Tekhn. Nauk (1966), 3, 39–40.

    Google Scholar 

  3. Alenin, V.P., Some problems of rational design of spatial frames allowing for stability constraints (in Russian), Issled. Rasch. Stroit. Konstr. (1977), 2. 14–21.

    Google Scholar 

  4. Amari, M., Yamakawa, H., Okumura, A., Optimum design of framed structures with regard to elastic buckling, Bull. JSME 22 (1979), 165, 309–318.

    Article  Google Scholar 

  5. Arifkhodjayev, S.A., Tuychiyev, N.D., On minimization of volume of certain frames (in Russian), Izv. AN UzbSSR, Ser. Tekhn. Nauk (1968), 3, 25–29.

    Google Scholar 

  6. Arifkhodjayev, S.A., Tuychiyev, N.D., Evaluation of optimal cross-sectional parameters of a plane frame (in Russian), Izv. AN UzbSSR, Ser. Tekhn. Nauk (1968), 2, 39–42.

    Google Scholar 

  7. Arora, J.S., Inverse problems of structural optimization, Proc. ASCE, J. Struct. Div. 100 (1974), 11, 2355–2360.

    Google Scholar 

  8. Baublis, P.S., Krutinis, A.A., Some problems of mumerical procedures of optimization of bar systems subject to buckling (in Russian), Probl. Optimiz. Mekh. Tverd. Def. Tela, vyp. 2, Vilnius 1974, 7–8.

    Google Scholar 

  9. Baublis, P.S., Remishauskas, M.Yu., Tsypinas, I.K., Method of projecting gradients as applied to optimization of elastic frames subject to buckling (in Russian), Lit. Mekh. Sbornik (1970), 1, 129–134.

    Google Scholar 

  10. Baublis, P.S., Tsypinas, I.K., Method of projecting gradients as applied to optimization of elastic systems subject to buckling (in Russian), Lit. Mekh. Sbornik (1969), 1, 70–81.

    Google Scholar 

  11. Baublis, P.S., Tsypinas, I., K., Optimization of a system with centrally compressed members beyond the elastic limit (in Russian), Lit. Mekh. Sbornik (1970), 1, 123–128.

    Google Scholar 

  12. Berdichevsky, M.M., Gordeyev, V.V., On the choice of cross-sections of members under tension and compression in the problem of optimal design of trusses (in Russian), Mat. po Metal. Konstr. 16. (1972), 47–52.

    Google Scholar 

  13. Bigelow, R.H., Gaylord, E.H., Minimum weight of plastically designed steel frames, Univ. of Illinois Bull. No. 485, 1966.

    Google Scholar 

  14. Bigelow, R.H., Gaylord, E.H., Design of steel frames for minimum weight, Proc. ASCE, J. Struct. Div, 93 (1967), 6, 109–131.

    Google Scholar 

  15. Bleich, F., Die Knickfestigkeit elastischer Stabverbindungen, Der Eisenbau 10 (1919), 27.

    Google Scholar 

  16. Bleich, F., Bleich, H., Die Stabilitat räumlicher Stabverbindungen, Z. Österr. Ing. u. Architektenvereines (1928), 345.

    Google Scholar 

  17. Bobrin, V.A., On solving equations of minimal volume for a hyperstatic bar system, based on variational calculus (in Russian), Sborn. Trud. Khabarovsk. Inst. Inzh. Zhel. Dor. Transp. 32 (1968), 91–105.

    Google Scholar 

  18. Bochenek, B., Gajewski, A., Jednomodalna i dwumodalna optymalizacja ramy portalowej, Rozpr. Inz. 30 (1982), 1, 21–36.

    MATH  Google Scholar 

  19. Bochenek, B., Gajewski, A., Certain problems of unimodal and bimodal optimal design of structures, in [0.72], 204–209.

    Google Scholar 

  20. Chwalla, E., Jokisch, F., Über das ebene Knickproblem des Stockwerkrahmens, Der Stahlbau 14 (1941), 33.

    Google Scholar 

  21. Chyuchyalis, A., I., Matsulavichyus, D.A., A random search algorithm for the optimal synthesis of scheme and material distribution in trusses under multiple loadings (in Russian), Lit. Mekh. Sbornik (1972), 1, 49–60.

    Google Scholar 

  22. Chyuchyalis, A.I., Matsulavichyus, D.A., A convex programming algorithm for synthesis of a truss of minimal weight under multiple loadings with stability constraints (in Russian), Lit. Mekh. Sbornik (1972), 1, 61–67.

    Google Scholar 

  23. De Freitas, J.A.T., Smith, D.L., A general methodology for nonlinear structural analysis by mathematical programming, Eng. Structures 6 (1984), 1, 52–60.

    Article  Google Scholar 

  24. Dobbs, M.W., Felton, L.P., Optimization of truss geometry, Proc. ASCE, J. Struct. Div. 95 (1969), ST-10, 2105–2118.

    Google Scholar 

  25. Dorn, W.C., Gomory, R.E., Greenberg, H.J., Automatic design of optimal structures, J. Mécanique 3 (1964), 1, 25–52.

    Google Scholar 

  26. Doroshenko, O.P., On the choice of combined systems of minimal cost (in Russian), Prikl. Mekhanika 4 (1968), 5, 138–140.

    Google Scholar 

  27. Elizarov, A.F., Optimal design of framed systems, subject to buckling, by the method of successive approximations (in Russian), Issled. po Stroit, Konstr. i Stroit. Mekh. Tomsky Univ. 1976, 20–27.

    Google Scholar 

  28. Farkas, J., Optimum design of metal structures, Akademiai Kiado, Budapest 1984.

    Google Scholar 

  29. Fedorov, I.A., On the problem of a truss of minimal weight (in Russian), Stroit. Mekh. Rasch. Sooruzh., (1967) 6, 11–14.

    Google Scholar 

  30. Felton, L.P., Fuchs, M.B., Simplified direct optimization of tubular truss structures, Int. J. Numer. Meth. Eng. 17 (1981), 4, 601–613.

    Article  MATH  Google Scholar 

  31. Felton, L.P., Hofmeister, L.D., Optimized components in truss synthesis, AIAA Journal 6 (1968), 12, 2434–2436.

    Article  ADS  Google Scholar 

  32. Fox, R.L., Schmit, L.A., Advances in the integrated approach to structural synthesis, J. Spacecraft 3 (1966), 858–866.

    Article  Google Scholar 

  33. Galimshin, R.A., Optimal design of trusses allowing for stability of compressed members (in Russian), Issled., Rasch, i Ispyt. Metal. Konstr., Kazan, No. 2 (1978), 12–15.

    Google Scholar 

  34. Gellatly, R. A., Survey of the state-of-the-art of optimization technology within NATO countries, AGARD-CP-123, Milan 1973.

    Google Scholar 

  35. Gellatly, R.A., Berke, L., Gibson, W., The use of optimally criteria in automated structural design, 3rd Conf. Matrix Methods in Struct. Mech., Wright-Patterson Air Force Base, Ohio 1971.

    Google Scholar 

  36. Gemmerling, A.V., On stability and optimal design of frames (in Russian), Stroit. Mekh. Rasch. Sooruzh. (1977), 4, 58–62, 65.

    Google Scholar 

  37. Geniev, G.A., On the principle of equigradientness and its application to optimization of stability of bar systems (in Russian), Stroit. Mekh. Rasch. Sooruzh. (1979), 6, 8–13.

    Google Scholar 

  38. Gerasimov, E.N., On structural synthesis of statically determinate trusses of minimal volume (in Russian), Trudy Kazan. Inzh. Stroit. Inst. 13 (1971), 209–219.

    Google Scholar 

  39. Gerasimov, E.N., Stability of elastic systems under constant and combined loadings in the case of multicritical optimization (in Russian), Dinamika, Prochn. i Dolgovechn. Detaley Mashin, vyp. 3, Izhevsk 1979, 34–41.

    Google Scholar 

  40. Goff, R.F., Decision theory and shape of structures, J. Roy. Aero Soc. (1966), N. 663, 70.

    Google Scholar 

  41. Govil, A.K., Arora, J.S., Haug, E.J., Optimal design of frames with substructuring, Computers and Structures 12 (1980), 1, 1–10.

    Article  MATH  Google Scholar 

  42. Greene, W.H., Sobieszczanski-Sobieski, J., Minimum mass sizing of a large low-aspect ratio airframe for flutter-free performance, J. Aircraft 19 (1982), 3, 228–234.

    Article  Google Scholar 

  43. Grumman Aerospace Corporation, An improved automated structural optimization program, TR AFFDL-TR-74–96 (Sept. 1974).

    Google Scholar 

  44. Hartz, B.J., Matrix formulation of structural stability problems, Proc. ASCE, J. Struct. Div., 91 (1965), ST5, 141–157.

    Google Scholar 

  45. Haug, E.J., Choi, K.K., Structural design sensitivity analysis with generalized global stiffness and mass matrices, AIAA Journal 22 (1984), 9, 1299–1303.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Haug, E.J., Pan, K.C., Streeter, T.D., A computational method for optimal structural design, I: piece-wise uniform structures, Int. J. Numer. Meth. Eng. 5 (1972), 2, 171–184.

    Article  MathSciNet  MATH  Google Scholar 

  47. Haug, E.J., Wehage, R.A., Mani, N.K., Design sensitivity analysis of large-scale constrained dynamic mechanical systems, J. Mech. Transmiss. Autom. Des. (Trans. ASME) 106 (1984), 2, 156–162.

    Article  Google Scholar 

  48. Hemmig, F.G., Venkayya, V.B., Eastep, F.E., Flutter speed degradation of damaged, optimized flight vehicles, AIAA/ASME/ASCE/AHS 20th Struct., Struct. Dyn. and Mat. Conf., St. Louis (1979), 345–351.

    Google Scholar 

  49. Isreb, M., Desap 1: A structural synthesis with stress and local instability constraints, Computers and Structures 8 (1978), 2, 243–256.

    Article  MATH  Google Scholar 

  50. Jogi, E.M., A general problem of synthesis of an optimal structure (in Russian), Trudy Tallinsk. Polit.Inst. A257 (1967), 87–98.

    Google Scholar 

  51. Kabulov, V.K., Optimal trusses (in Russian), Vopr. Vychislit. i Prikl. Mat. 13 (1972), Tashkent, 60–83.

    Google Scholar 

  52. Kamat, M.P., Khot, N.S., Venkayya, V.B., Optimization of shallow trusses against limit point instability, AIAA Journal 22 (1984), 3, 403–407.

    Article  ADS  MATH  Google Scholar 

  53. Khan, M.R., Thornton, V.A., Willmert, K.D., An optimality criterion technique for structures with multiple design variables per member, AIAA/ASME/ASCE/AHS 20the Struct., Struct. Dyn., and Mat. Conf., St. Louis (1979), 87–95.

    Google Scholar 

  54. Khot, N.S., Nonlinear analysis of optimized structure with constraints on system stability, AIAA Journal 21 (1983), 8, 1181–1186.

    Article  ADS  MATH  Google Scholar 

  55. Khot, N.S., Berke, L., Venkayya, V.B., Comparison of optimality criteria algorithms for minimum weight design of structures, AIAA Journal 17 (1979), 2, 182–190.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Khot, N.S., Kamat, M.P., Minimum weight design of truss structures with geometric nonlinear behaviour, AIAA Journal 23 (1985), 1, 139–144.

    Article  ADS  MATH  Google Scholar 

  57. Khot, N.S., Venkayya, V.B., Berke, L., Optimum structural design with stability constraints, Int. J. Numer. Meth. Eng. 10 (1976), 10, 1097–1114.

    Article  MATH  Google Scholar 

  58. Khrapovitsky, I.S., Analysis of spatial frames with optimal cross-sectional parameters of members (in Russian), Trudy Kharkovsk. Inst. Zhel. Dor. Transp. 91 (1967), 32–37.

    Google Scholar 

  59. Kicheyev, V.Ye., On optimization of some geometrical parameters of statically determinate trusses (in Russian), Trudy Kazan. Aviats. Inst. 139 (1971), 47–63.

    Google Scholar 

  60. Kirste, L., Beitrag zum Problem des “Tragwerks-Mindestgewicht,” Z. Flugwiss. 8 (1960), 12, 352–359.

    Google Scholar 

  61. Kirste, L., Ein weiterer Beitrag zum Problem des “Tragwerks-Mindestgewichts,” Z. Flugwiss. 9 (1961), 11, 343–347.

    MATH  Google Scholar 

  62. Kitov, Yu.P., Khrapovitsky, LS., Application of dynamic programming to optimal design of statically determinate trusses (in Russian), Trudy Kharkovsk. Inst. Inzh. Zhel. Dor. Transp. 127 (1971), 54–62.

    Google Scholar 

  63. Kolarov, I., On evaluation of optimal parameters of trusses (in Russian), Prace Inst. Konstr. i Ekspl. Maszyn Polit. Wroclawskiej 37 (1979), 117–124.

    Google Scholar 

  64. Kolupaev, A.N., On computer-aided synthesis of trusses under external loading (in Russian), Trudy Kazan. Aviats. Inst. 113 (1969).

    Google Scholar 

  65. Korshun, L.I., Khamutovsky, A.S., Optimization of elastic frames with centrally compressed members (in Russian), Vopr. Stroit. i Arkhit. Minsk, 11 (1981), 120–125.

    Google Scholar 

  66. Korshunov, A.I., Optimal height of statically determinate trusses (in Russian), Trudy Kazan. Aviats. Inst. 91 (1966), 82–90.

    Google Scholar 

  67. Kounadis, A.N., Divergence and flutter instability of elastically restrained structures under follower forces, Int. J. Eng. Sci 19 (1981), 553–562.

    Article  MathSciNet  MATH  Google Scholar 

  68. Kounadis, A.N., Avraam, T.P., Linear and nonlinear analysis of a nonconservative frame of divergence instability, AIAA Journal 19 (1981), 6, 761–765.

    Article  ADS  MATH  Google Scholar 

  69. Kruglov, A.I., On determination of the gradient of stability condition for an optimal bar system (in Russian), Stroit. Mekh. Rasch. Sooruzh. (1978), 2, 52–54.

    Google Scholar 

  70. Kulikov, N.G., Principle of equal stability of a bar system and its role in ensuring of global stability of a structure (in Russian), Prikl. Probl. Prochn. Plast. (Gorky), 23 (1983), 133–142.

    Google Scholar 

  71. Kwak, B.M., Haug, EJ. Jr., Optimum design in the presence of parametric uncertainty, J. Optimiz. Theory Appl. 19 (1976), 4, 527–546.

    Article  MathSciNet  MATH  Google Scholar 

  72. LaPay, W.S., Goble, G.G., Optimum design of trusses for ultimate loads, Proc. ASCE, J. Struct. Div. 97 (1971), 157–174.

    Google Scholar 

  73. Lipson, S.L., Agravai, K.M., Weight optimization of plane trusses, Proc. ASCE, J. Struct. Div. 100 (1974), ST5, 865–879.

    Google Scholar 

  74. Lipson, S.L., Gwin, L.B., Discrete sizing of trusses for optimal geometry, Proc. ASCE, J. Struct. Div. 103 (1977), ST5, 1031–1046.

    Google Scholar 

  75. Lipson, S.L., Gwin, L.B., The complex method applied to optimal truss configuration, Computers and Structures 7 (1977), 3, 461–468.

    Article  Google Scholar 

  76. Maier, G., Drucker, D.C., Effects of geometry change on essential features of inelastic behaviour, Proc. ASCE, J. Eng. Mech. Div., 99 (1973), EM4, 819–834.

    Google Scholar 

  77. Majid, K.I., Tang, X., The optimum design of pin-jointed space structures with variable shape, Struct. Eng. B62 (1984), 2, 31–37.

    Google Scholar 

  78. Malinovsky, A.P., On the problem of minimal weight design of bar systems (in Russian), Issled. po Stroit. Konstr. i Fundam., Tomsk 1980, 19–22.

    Google Scholar 

  79. Malkov, V.P., Morozov, V.D., A combined approach to multiparameter optimization of structures (in Russian), Prikl. Probl. Prochn. Plast. (Gorky), 7 (1977), 85–90.

    Google Scholar 

  80. Malkov, V.P., Petrivin, I.I., Optimal material distribution in bar systems (in Russian), Optim. Proekt. Aviats. Konstr., Kuybyshev, 1 (1973), 124–136.

    Google Scholar 

  81. Mallett, R.H., Marcai, P.V., Finite element analysis of nonlinear structures, Proc. ASCE, J. Struct. Div., 94 (1968), ST9, 2081–2105.

    Google Scholar 

  82. Markiewicz, M., Ksztaltowanie prostych ustrojow kratowych przy warunkach statecznosci sprezyato-plastycznej metoda wyznaczania konturu calkowitej niejednoznacznosci, Rozpr. Inz. 28 (1980), 4, 569–584.

    MathSciNet  MATH  Google Scholar 

  83. Markiewicz, M., Zyczkowski, M., Contour of complete non-uniqueness as a method of structural optimization with stability constraints, J. Optimiz. Theory Appl. 35 (1981), 1, 23–30.

    Article  MathSciNet  MATH  Google Scholar 

  84. Martini, L., Slupy linii energetycznych z elementow iglicowych, Arch. Inz. Led. 15 (1969), 3, 541.

    MathSciNet  Google Scholar 

  85. Mises, R., Über die Stabilitätsprobleme der Elastizitätstheorie, Z. Angew. Math. Mech. 3 (1923), 406–422.

    Article  Google Scholar 

  86. Mises, R., Über die Stabilitätsprobleme der Elastizitätstheorie, Selecta, 1, Providence 1963, 217–244.

    Google Scholar 

  87. Mitra, G.P., Keshava Rao, M.N., Gupta, A.K., Optimum design of lattice towers for power transmission and telecommunications, J. Struct. Eng. 6 (1978), 1, 29–35.

    Google Scholar 

  88. Morozov, E.P., Optimal slopes of angle struts of lattice masts (in Russian), Stroit. Mekh. Rasch. Sooruzh. (1969), 4, 51–54.

    Google Scholar 

  89. Nakamura, Y., Optimum design of framed structures using linear programming, Proc. Symp. Effect. Use Digit. Comp. Struct. Des. 1968, Tokyo 1970, 165–177.

    Google Scholar 

  90. Nemchin, N.P., Optimization of hyperstatic truss systems by the quadratic programming method (in Russian), Chitinsky Polit. Inst. (1984), 12 pp.

    Google Scholar 

  91. Nguyen, D.H., de Saxce, G., Analyse et dimensionnement plastique des structures a barres dans les conditions de stabilité, Constr. Métallique (1981), 3, 15–38.

    Google Scholar 

  92. Olkov, Ya.I., Layout optimization of a steel truss by the method of dynamic search (in Russian), Raschet Prostr. Stroit. Konstr. (Kuybyshev), 4 (1974), 215–220.

    Google Scholar 

  93. Olkov, Ya.I., Antipin, A.A., Optimum material distribution in statically indeterminate pin-jointed rod systems (in Russian), Izv. Vuzuv, Stroit. i Arkhit. 6 (1978), 51–56.

    Google Scholar 

  94. Olkov, Ya.L, Antipin, A.A., On convergence of an iterative algorithm of optimal material distribution in pin-jointed metal structures (in Russian), Izv. Vuzov, Stroit i Arkhit 10 (1981), 50–55.

    Google Scholar 

  95. Olkov, Ya.I., Kholopov, I.S., Evaluation of column stability parameters in optimization of statically indeterminate trusses (in Russian), Izv. Vuzov, Stroit. i Arkhit. 7 (1972), 17–20.

    Google Scholar 

  96. Orel, F.N., Optimal design of bar systems with members of piece-wise constant cross-section (in Russian), Issled. Optim. Metallokonstr. i Det. Podyomno-Transp. Mashin (Kuybyshev), 1 (1976), 84–90.

    Google Scholar 

  97. Patnaik, S.N., Srivastava, N.K., On automated optimum design of trusses, Comput. Meth. Appl. Mech. Engng. 9 (1976), 3, 245–265.

    Article  ADS  Google Scholar 

  98. Pedersen, P., On the minimum mass layout of trusses, AGARD Conf. Proc. No. 36, Oct. 1970.

    Google Scholar 

  99. Pedersen, P., On the optimal layout of multi-purpose trusses, Computers and Structures 2 (1972), 5/6, 695–712.

    Article  Google Scholar 

  100. Pederson, P., Optimal joint positions for space trusses, Proc. ASCE, J. Struct. Div., 99 (1973), 12, 2459–2476.

    Google Scholar 

  101. Pilkey, W., Saczalski, K., Schaeffer, H., Structural mechanics computer programs: surveys, assessments and availability, Univ. Press of Virginia-Charlottesville (1974), 227–253.

    Google Scholar 

  102. Prager, W., Elastic stability of plane frameworks, J. Aero. Sci. 3 (1936), 388.

    Google Scholar 

  103. Prato, CA., Maximization of eigenvalues by conjugate gradients, Proc. ASCE, J. Struct. Div., 96 (1970), 1, 171–176.

    Google Scholar 

  104. Radtsig, Yu.A., Arslanov, A.Sh., Minimal weight design of statically indeterminate trusses allowing for stability constraints (in Russian), Sbornik Vsesoy. Konf. po Probl. Ustoych., Vilnius 1967, 120.

    Google Scholar 

  105. Raevsky, A.N., Analysis of metal trusses ensuring equal stability of all compressed members (in Russian), Sbornik Vsesoy. Konf. po Probl. Ustoych., Vilnius 1967, 120–121.

    Google Scholar 

  106. Raevsky, A.N., On optimal properties of framed systems with members of equal stability (in Russian), Soprot. Mat. i Teoria Soorush. 23 (1974), 113–121.

    Google Scholar 

  107. Raevsky, A.N., Application of linear programming to analysis and optimization of frames under stability constraints (in Russian), Stroit. Mekh. Rasch. Sooruzh. (1975), 4, 39–44.

    Google Scholar 

  108. Raevsky, A.N., Shein, A.I., On the solution of optimization problem of multistorey frames using stability conditions (in Russian), Stroit. Mekh. Sooruzh., Leningrad 1981, 90–97.

    Google Scholar 

  109. Raevsky, A.N., Shein, A.I., On optimality of multistorey frames with equal stability members (in Russian), Izv. Vuzov, Stroit. i Arkhit. (1982), 3, 37–41.

    Google Scholar 

  110. Reinschmidt, K.F., Russell, A.D., Application of linear programming in structural layout and optimization, Computers and Structures 4 (1974), 885–869.

    Article  Google Scholar 

  111. Reitman, M.I., Rudolf, F., Dynamische Optimierung von Fachwerken, Bauplanung — Bautechnik (1972), 4.

    Google Scholar 

  112. Reytman, M.I., Rudolf F., Synthesis of optimal statically determinate trusses aided by dynamic programming (in Russian), Sbornik Trud. Mosk. Inzh. Stroit. Inst. 83 (1970), 191–201.

    Google Scholar 

  113. Romstad, K.M., Runge, K.H., Efficient frame design for stability constraints, Proc. ASCE, J. Eng. Mech. Div. 100 (1974), 6, 1286–1292.

    Google Scholar 

  114. Rosenkranz, B., Contributo alla ottimizzazione del peso di travi a traliccio, Costr. Metall. 20 (1968), 329–338.

    Google Scholar 

  115. Roy, G.G., Toakley, A.R., Stevens, L.K., Optimum elastic-plastic design of triangulated frameworks, Civ. Eng. Trans. Inst. Eng. Austral. 14 (1972), 2, 195–200.

    Google Scholar 

  116. Rudolf, F., Optimierung von Stabtragwerken mit diskreten Variablen, Weiterbildungszentrum Festkörpermechanik TU Dresden (1980), 1, 47–59.

    Google Scholar 

  117. Russell, A.D., Reinschmidt, K.F., Discussion of “Optimum design of trusses for ultimate loads,” Proc. ASCE, J. Struct. Div. 97 (1971), ST9, 2437–2442.

    Google Scholar 

  118. Saka, M.P., Shape optimization of trusses, Proc. ASCE, J. Struct. Div. 106 (1980), 5, 1155–1174.

    Google Scholar 

  119. Schmit, L.A. Jr., Ramanathan, R.K., Multilevel approach to minimum weight design including buckling constraints, AIAA Journal 16 (1978), 2, 97–104.

    Article  ADS  Google Scholar 

  120. Silakov, V.P., Minimal volume design of statically indeterminate trusses by the method of steepest descent (in Russian), Izv. Vuzov, Stroit. i Arkhit. (1971), 12, 37–40.

    Google Scholar 

  121. Spillers, W.R., Kountouris, G.E., Geometric optimization using simple code representation, Proc. ASCE, J. Struct. Div. 106 (1980), 5, 959–971.

    Google Scholar 

  122. Svanberg, K., Optimization of geometry in truss design, Comput. Meth. Appl. Mech. and Eng. 28 (1981), 1, 63–80.

    Article  ADS  MATH  Google Scholar 

  123. Te, A.B., Yaffe, G.V., Optimal material distribution in the problem of stability of a bar system (in Russian), Issled. po Stroit. Mekh., Tomsk 1983, 29–34.

    Google Scholar 

  124. Templeman, A.B., Optimum truss design using approximating functions, in [0.36], 327–349.

    Google Scholar 

  125. Thomas, H.R. Jr., Brown, D.M., Optimum least-cost design of a truss roof system, Computers and Structures 7 (1977), 1, 13–22.

    Article  Google Scholar 

  126. Toakley, A.R., Some computational aspects of optimum rigid-plastic design, Int. J. Mech. Sci. 10 (1968), 6, 531–537.

    Article  MATH  Google Scholar 

  127. Toakley, A.R., The optimum plastic design of unbraced frameworks, Civ. Eng. Trans. Inst. Eng. Austral. 11 (1969), 111–116.

    Google Scholar 

  128. Toakley, A.R., Batten, D.F., Wilson, B.G., Optimum plastic design of unbraced frameworks, in [0.36], 294–312.

    Google Scholar 

  129. Tsypinas, I.K., On the problem of synthesis of optimal bar systems subject to loss of stability (in Russian), Lit. Mekh. Sbornik (1968), 2, 22–33.

    Google Scholar 

  130. Tsypinas, I.K., On optimization problems for elastic systems subject to loss of stability (in Russian), Lit. Mekh. Sbornik (1971), 1, 35–49.

    Google Scholar 

  131. Tsypinas, I.K., Optimization of nonlinearly deformable bar system subject to beam-column effects (in Russian), Lit. Mekh. Sbornik (1971), 2, 17–26.

    Google Scholar 

  132. Vanderplaats, G.N., Moses, F., Automated design of trusses for optimum geometry, Proc. ASCE, J. Struct. Div. 98 (1972), 3, 671–690.

    Google Scholar 

  133. Vanderplaats, G.N., Moses, F., Structural optimization by method of feasible directions, Computers and Structures 3 (1973), 4, 739–755.

    Article  Google Scholar 

  134. Wilkinson, K., Lerner, E., Taylor, R.F., Practical design of minimum-weigth aircraft structures for strength and flutter requirements, J. Aircraft 13 (1976), 8, 614–624.

    Article  Google Scholar 

  135. Wojdanowska, R., Optymalne ksztaltowanie ustrojow kratowych w warunkach pelzania w nawiazaniu do teorii wyboczenia Rabotnowa-Szestierikowa, Mech. Teor. Stos. 12 (1974), 3, 245–263.

    MATH  Google Scholar 

  136. Wojdanowska-Zajac, R., Zyczkowski, M., Optimal structural design of trusses with the conditions of elastic-plastic stability taken into account, Bull. Acad.Pol., Ser. Sci. Techn. 18 (1970), 9, 681–688 (English summary).

    Google Scholar 

  137. Wojdanowska-Zajac, R., Zyczkowski, M., Optimal structural design of trusses with the conditions of elastic-plastic stability taken into account, Rozpr. Inz. 17 (1969), 3, 347–367 (Polish full text).

    Google Scholar 

  138. Wojdanowska, R., Zyczkowski, M., Optimum design of lattice structures in creep conditions with consideration of the Kempner-Hoff theory of buckling, Bull. Acad. Pol., Ser. Sei. Techn. 21 (1973), 6, 261–268 (English summary).

    Google Scholar 

  139. Wojdanowska, R., Zyczkowski, M., Optimum design of lattice structures in creep conditions with consideration of the Kempner-Hoff theory of buckling, Arch. Inz. Ladowej 18 (1972), 3/4, 511–530 (Polish full text).

    Google Scholar 

  140. Wojdanowska, R., Zyczkowski, M., Optimal trusses transmitting a force to a given contour in creep conditions, Int. J. Mech. Sci. 26 (1984), 1, 21–28.

    Article  MATH  Google Scholar 

  141. Yaffe, G.V., An optimization algorithm for a bar system allowing for stability (in Russian), Tomsky Inzh. Stroit Inst. (1982), 8 pp.

    Google Scholar 

  142. Yoo, C.H., Optimization of triangular laced truss columns with tubular compression members for space application, AIAA Journal 17 (1979), 8, 921–924.

    Article  ADS  Google Scholar 

  143. Zarghamee, M.S., Minimum weight design with stability constraint, Proc. ASCE, J. Struct. Div. 96 (1970), ST8, 1697–1710.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gajewski, A., Zyczkowski, M. (1988). Trusses and Frames. In: Optimal Structural Design under Stability Constraints. Mechanics of Elastic Stability, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2754-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2754-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7737-8

  • Online ISBN: 978-94-009-2754-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics