Advertisement

The Management of Solvency

Chapter
Part of the Huebner International Series on Risk, Insurance, and Economic Security book series (HSRI, volume 8)

Abstract

An insurer is solvent if it has sufficient assets to meet its liabilities.

Keywords

Risk Premium Premium Rate Claim Size Premium Income Claim Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arfwedson, G. 1950. Some problems in collective theory of risk. Skandinavisk Actuarie Tidskrift 33: 1–38.Google Scholar
  2. Arfwedson, G. 1954–1955. Research in collective risk theory. Skandinavisk Actuarie Tidskrift 37: 191–223Google Scholar
  3. Arfwedson, G. 1954–1955. Research in collective risk theory. Skandinavisk Actuarie Tidskrift 38: 37–100.Google Scholar
  4. Asmussen, S. 1984. Approximations for the probability of ruin within finite time. Scandinavian Actuarial Journal 1984(1): 31–57.Google Scholar
  5. Bartholomew, D.J. 1975. Errors of prediction in Markov chains. Journal of the Royal Statistical Society, Series B 37: 444–456.Google Scholar
  6. Beard, R.E., Pentikäinen, T. and Pesonen, E. 1969. Risk Theory. Methuen & Co. Ltd., London.Google Scholar
  7. Beekman, J.A. 1980. A stochastic investment model. Transactions of the Society of Actuaries 32: 9–24.Google Scholar
  8. Beneš, V.E. 1960. Combinatory methods and stochastic Kolmogorov equations in the theory of queues with one server. Transactions of the American Mathematical Society 94: 282–294.Google Scholar
  9. Bühlmann, H. 1970. Mathematical methods in risk theory. Springer-Verlag, Berlin.Google Scholar
  10. Coutts, S.M., Devitt E.R., and Ross G.A.F. 1984. A probabilisticapproach to assessing the financial strength of a general insurance company. Transactions of 22nd International Congress of Actuaries 3: 129–136.Google Scholar
  11. Cramér, H. 1930. On the mathematical theory of risk. Försäkringsaktiebolaget Skandia, 1855–1930. Stockholm.Google Scholar
  12. Cramer, H. 1955. Collective risk theory: a survey of the theory from the point of view of the theory of stochastic processes. Forsäkringsaktiebolaget Skandia, 1855–1955. Esselta, Centraltryckeriet, Stockholm.Google Scholar
  13. Daykin, C.D. and Bernstein, G.D. 1985. A simulation model to examine questions of solvency in the light of asset and run-off risks. Paper presented to the l8th Astin Colloquium, Biarritz, France, October 1984.Google Scholar
  14. Daykin, CD., Bernstein, G.D., Coutts, S.M., Devitt, E.R.F., Hey, G.B., Reynolds, D.I.W. and Smith, P.D. 1987. The solvency of a general insurance company in terms of emerging costs. Astin Bulletin 17(1): 85–132.CrossRefGoogle Scholar
  15. Embrechts, P. and Veraverbeke, N. 1982. Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance: mathematics and economics 1(1): 55–72.CrossRefGoogle Scholar
  16. Gerber, H.U. 1975. The surplus process as a fair game -utilitywise. Astin Bulletin 8(3): 307–322.Google Scholar
  17. Gerber, H.U. 1979. An introduction to mathematical risk theory. Monograph No. 8, S.S. Huebner Foundation for Insurance Education, Wharton School, University of Pennsylvania, Philadelphia. Distributed by Richard D. Irwin, Inc., Homewood, Illinois.Google Scholar
  18. Goovaerts, M. and De Vylder, F. 1984. Dangerous distributions and ruin probabilities in the classical risk model. Transactions of the 22nd International Congress of Actuaries 3: 111–120.Google Scholar
  19. Laurin, I. 1930. An introduction into Lundberg’s theory of risk. Skandinavisk Aktuarie Tidskrift, 84–111.Google Scholar
  20. Lundberg, F. 1909. Über die Theorie der Ruckversicherung. Ber. VI. Intern. Kong. Versich. Wissens. 1: 877–948.Google Scholar
  21. Miller, A.J. 1984. Selection of subsets of regression variables. Journal of the Royal Statistical Society, Series A, 147: 389–425.CrossRefGoogle Scholar
  22. Pentikäinen, T. 1982. (ed). Solvency of insurers and equalization reserves. Vol. I. General aspects. Insurance Publishing Company Ltd, Helsinki.Google Scholar
  23. Rantala, J. 1982. (ed). Solvency of insurers and equalization reserves. Vol. II. Risk theoretical model. Insurance Publishing Company Ltd, Helsinki.Google Scholar
  24. Reid, D.H. 1978. Claim reserves in general insurance. Journal of the Institute of Actuaries 105(3): 211–296.Google Scholar
  25. Seal, H. 1969. Stochastic theory of a risk business. John Wiley & Sons, New York.Google Scholar
  26. Seal, H.L. 1972. Numerical calculation of the probability of ruin in the Poisson/exponential case. Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker 72(1): 77–98.Google Scholar
  27. Seal, H.L. 1974. The numerical calculation of U(w,t) the probability of non-ruin in an interval (0,t). Scandinavian Actuarial Journal, 121–139.Google Scholar
  28. Seal, H.L. 1978. Survival probabilities. The goal of risk theory. John Wiley & Sons Ltd., New York.Google Scholar
  29. Taylor, G.C. 1975. On the radius of convergence of an inverted Taylor series with particular reference to the solution of characteristic equations. Scandinavian Actuarial Journal (1), 11–20.Google Scholar
  30. Taylor, G.C. 1976. Use of differential and integral inequalities to bound ruin and queuing probabilities. Scandinavian Actuarial Journal, 197–208.Google Scholar
  31. Taylor, G.C. 1979. The probability of ruin under conditions of inflation or experience rating. Astin Bulletin 10 (2): 149–162.Google Scholar
  32. Taylor, G.C. 1980. Probability of ruin with a variable premium rate. Scandinavian Actuarial Journal, 57–76.Google Scholar
  33. Taylor, G.C. 1984. Solvency margin funding for general insurance companies. Journal of the Institute of Actuaries 111(1): 173–179.Google Scholar
  34. Taylor, G.C. 1986a. Determination of rate of investment return for the discounting of general insurance outstanding claims. Journal of the Institute of Actuaries 113 (1): 61–101.Google Scholar
  35. Taylor, G.C. 1986b. Underwriting strategy in a competitive insurance environment. Proceedings of the Macquarie University General Insurance Seminar. Insurance: mathematics and economics, 5(1), 59–77. Abridged version in the Australian Insurance Institute Journal (June 1985) 7–12.Google Scholar
  36. Taylor, G.C. 1987. Balancing an insurance portfolio by class of business. Insurance: mathematics and economics 6(1): 7–18.CrossRefGoogle Scholar
  37. Taylor, G.C. and Ashe, F.R. 1983. Second moments of estimates of outstanding claims. Journal of Econometrics 23: 37–61. Paper presented to the 16th Astin Colloquium, Liege, Belgium, September 1982.CrossRefGoogle Scholar
  38. Teugels, J.L. 1982. Estimation of ruin probabilities. Insurance: mathematics and economics 1(3): 163–175.CrossRefGoogle Scholar
  39. Thorin, O. 1970. Some remarks on the ruin problem in case the epochs of claims form a renewal process. Scandinavian Actuarial Journal, 29–50.Google Scholar
  40. Thorin, O. 1971. Further remarks on the ruin problem in case the epochs of claims form a renewal process. Scandinavian Actuarial Journal, 14–38, 121–142.Google Scholar
  41. Wilkie, A.D. 1986. A stochastic invzestment model for actuarial use Transactions of the Faculty of Actuaries 39: 341.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

There are no affiliations available

Personalised recommendations