Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 157))

Abstract

An enterprise of considerable current interest in theoretical physics is the study of interfaces and membranes. In condensed matter physics, an “interface” usually means a boundary between two phases, whose fluctuations can be studied by methods adapted from equilibrium critical phenomena. The statistical mechanics is typically controlled by a surface tension, which insures that such surfaces are relatively flat. Recently, however, there has been increasing interest in membrane-like surfaces. “Membranes” are composed of molecules different from the medium in which they are imbedded, and they need not separate two distinct phases. Because their microscopic surface tension is small or vanishes altogether, membranes exhibit wild fluctuations. New ideas and new mathematical tools are required to understand them.

We first sketch the physics of “flat” interfaces, and then discuss crumpled tethered membranes which are natural generalizations of linear polymers. More generally, the large distance behaviors of membranes fall into a variety of universality classes, depending, for example, on whether the local order is liquid or crystalline. We show that membranes with a nonzero shear modulus differ from their liquid counterparts in that they exhibit a flat phase with long-range order in the normals at sufficiently low temperatures. Because entropy favors crumpled surfaces with decorrelated normals, there must be a transition to a crumpled phase at sufficiently high temperatures. We also discuss the energies of discinations and dislocations in flexible membranes with local crystalline order. Unlike crystalline ifims forced to be flat by a surface tension, it is energetically favorable for membranes to screen out elastic stresses by buckling into the third dimension. Dislocations, in particular, are predicted to have a finite energy. We conclude that a finite density of dislocations must exist at all nonzero temperatures in nominally crystalline but unpolymerized membranes. The result macroscopically is a hexatic membrane, with zero shear modulus, but extended bond orientational order. The elastic energy which controls undulations in hexatic membranes is discussed briefly.

Related problems arise in field theory models of elementary particles.1 In contrast to these models of quantum mechanical strings, however, most of the models discussed here have explicit experimental realizations in condensed matter physics. Much of the vitality of this subject arises because of a delicate interplay between theory and experiment: theoretical predictions can, in principle, be checked by inexpensive but revealing laboratory experiments in a matter of months.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. B. Green, J. H. Schwars, and E. Witten, Superstring Theory 1 and 2 (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  2. J. Weeks, in Ordering in Strongly Fluctuating Condensed Matter Systeme, ed. T. Riste (Plenum, New York, 1980).

    Google Scholar 

  3. For an introduction useful to physicists, see B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry - Methods and Applications (Springer, New York, 1984).

    Google Scholar 

  4. J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B16, 1217 (1977).

    Google Scholar 

  5. J. Fröhlich, in Applications of Field Theory to Statistical Mechanics, ed. L. Garido, Lecture Notes in Physics, Vol. 216 (Springer-Verlag, Berlin, 1985).

    Chapter  Google Scholar 

  6. P. G. deGennes, Rev. Mod. Phys. 57, 827 (1985).

    Article  CAS  Google Scholar 

  7. E. Brésin, B. I. Halperin, and S. Leibler, Phys. Rev. Lett. 50, 1387 (1983);

    Article  Google Scholar 

  8. R. Lipowsky and D. M. Kroll and R. K. P. Zia, Phys. Rev. B27, 4499 (1983).

    Google Scholar 

  9. Y. Oono, Adv. Chem. Phys. 61, 301 (1985).

    Article  CAS  Google Scholar 

  10. P. G. deGennes, Scaling Concepts in Polymer Physics (Cornell U. Press, Ithaca, 1979).

    Google Scholar 

  11. E. Evans and R. Skalak, Mechanics and Thermodynamics of Biomembranes (CRC Press, Boca Raton, 1980).

    Google Scholar 

  12. P. G. deGennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982).

    Article  CAS  Google Scholar 

  13. Physics of Complex and Supermolecular Fluide, eds. S. A. Safran and N. A. Clark (John Wiley and Sons, New York, 1987).

    Google Scholar 

  14. Physics of Amphiphillic Layers, eds. J. Meunier, D. Langevin, and N. Boccara (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  15. H. Fendler and P. Tundo, Acc. Chem. Res. 17, 3 (1984).

    Article  CAS  Google Scholar 

  16. Blumstein, R. Blumstein, and T. H. Vanderspurt, J. Colloid Interface Sci. 31, 236 (1969).

    Article  CAS  Google Scholar 

  17. M. J. Asis, E. Nygren, J. F. Hays, and D. Turnbull, J. Appl. Phys. 57, 2233 (1985).

    Article  Google Scholar 

  18. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983).

    Book  Google Scholar 

  19. J. Larche, J. Appell, G. Porte, P. Bassereau, and J. Marignan, Phys. Rev. Lett. 56, 1700 (1986).

    Article  CAS  Google Scholar 

  20. C. R. Safinya, D. Roux, G. S. Smith, S. K. Sinha, P. Dimon, and N. A. Clark, Phys. Rev. Lett. 57, 2718 (1986).

    Article  CAS  Google Scholar 

  21. D. R. Nelson and L. Peliti, J. Physique 48, 1085 (1987); S. Seung and D. R. Nelson, Phys. Rev. A (in press).

    Google Scholar 

  22. D. R. Nelson and B. I. Halperin, Phys. Rev. B19, 2457 (1979)

    Google Scholar 

  23. D. R. Nelson, Phys. Rev. B27, 2902 (1983).

    Google Scholar 

  24. A. M. Polyakov, Phys. Lett. 103B, 207 (1981).

    CAS  Google Scholar 

  25. Y. Kantor, M. Kardar, and D. R. Nelson, Phys. Rev. Lett. 57, 791 (1986).

    Article  CAS  Google Scholar 

  26. Y. Kantor, M. Kardar, and D. R. Nelson, Phys. Rev. A35, 3056 (1987).

    Google Scholar 

  27. Kardar and D. R. Neison, Phys. Rev. Lett. 58, 1289 (1987); and Phys. Rev. A (in press).

    Google Scholar 

  28. J. A. Aronoviti and T. C. Lubensky, Europhys. Lett. 4, 395 (1987).

    Article  Google Scholar 

  29. D. Duplantier, Phys. Rev. Lett. 58, 2733 (1987).

    Article  Google Scholar 

  30. There are logarithmic corrections to the result of naive dimensional analysis in this case. See the Appendix of Ref. 24.

    Google Scholar 

  31. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).

    Google Scholar 

  32. A. M. Polyakov, Nucl. Phys. B268, 406 (1986).

    Article  CAS  Google Scholar 

  33. A. M. Polyakov, Phys. Rev. Lett. 59B, 79 (1975).

    Google Scholar 

  34. W. Helfrich, Z. Naturforsch. 28C, 693 (1973).

    Google Scholar 

  35. P. G. de Gennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982).

    Article  Google Scholar 

  36. D. R. Nelson, in Phase Transitions and Critical Phenomena, Vol. 7, edited by C. Domb and J. Lebowits (Academic, New York, 1983).

    Google Scholar 

  37. L. Peliti and S. Leibler, Phys. Rev. Lett. 54, 690 (1985)

    Article  Google Scholar 

  38. see also W. Helfrich, J. Physique 46, 1263 (1985).

    Article  CAS  Google Scholar 

  39. D. R. Nelson and L. Peliti, J. Physique 48, 1085 (1987).

    Article  CAS  Google Scholar 

  40. Y. Kantor and D. R. Nelson, Phys. Rev. Lett. 58, 2774 (1987)

    Article  CAS  Google Scholar 

  41. Y. Kantor and D. R. Nelson, Phys. Rev. A36, 4020 (1987).

    Google Scholar 

  42. L. D. Landau and E. M. Lifshits, Theory of Elasticity (Pergammon, New York, 1970).

    Google Scholar 

  43. For an analogous treatment of compressible spin models in d-dimensions, see J. Sak, Phys. Rev. B10, 3957 (1974).

    Google Scholar 

  44. See, e.g., S. Sachdev and D. R. Nelson, J. Phys. C17, 5473 (1984).

    Google Scholar 

  45. J. A. Aronovits and T. C. Lubensky, Phys. Rev. Lett, (in press).

    Google Scholar 

  46. J. M. Kosterlits and D. J. Thouless, J. Phys. C5, 124 (1972)

    Google Scholar 

  47. J. M. Kosterlits and D. J. Thouless, J. Phys. C6, 1181 (1973).

    Google Scholar 

  48. S. Seung and D. R. Nelson, Phys. Rev. A (in press).

    Google Scholar 

  49. F. David, E. Guitter, and L. Peliti, J. Phys. (Paris) 48, 2059 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nelson, D. (1998). The Statistical Mechanics of Crumpled Membranes. In: Stanley, H.E., Ostrowsky, N. (eds) Random Fluctuations and Pattern Growth: Experiments and Models. NATO ASI Series, vol 157. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2653-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2653-0_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-0073-1

  • Online ISBN: 978-94-009-2653-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics